.已知函数在区间[1,2]上不是单调函数,则错误!不能通过编辑域代码创建对象。的范围为
解析考点:利用导数研究函数的单调性;二次函数的性质.
分析:求出导函数,将不单调转化为在区间上有极值,转化为导函数在区间上有解且解的两边的导函数值相反,据导函数的对称轴在区间的左侧,得到导函数在区间两个端点的函数值相反,列出不等式求出a的范围.
解:f′(x)=ax2+2ax-1
∵f(x)在区间[1,2]上不是单调函数
∴f(x)在区间[1,2]上有极值,
当a=0时,f′(x)=-1<0,
此时f(x)为单调递减函数,不合题意;
当a≠0时,
∵f′(x)=ax2+2ax-1的对称轴为x=-1
∴ax2+2ax-1=0在区间[1,2]上只有一个根
∴f′(1)?f′(2)<0即(3a-1)(8a-1)<0
解得 <x<
故答案为(,)
科目:高中数学 来源: 题型:
设a为实常数,已知函数在区间[1,2]上是增函数,且在区间[0,1]上是减函数。
(Ⅰ)求常数的值;
(Ⅱ)设点P为函数图象上任意一点,求点P到直线距离的最小值;
(Ⅲ)若当且时,恒成立,求的取值范围。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省杭州高级中学高三第一次月考数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com