| A. | (-2015,0) | B. | (-∞,-2015) | C. | (-2017,0) | D. | (-∞,-2017) |
分析 根据条件,构造函数,利用函数的单调性和导数之间的关系,将不等式进行转化即可得到结论.
解答 解:由2f(x)+xf′(x)>x2,(x<0),
得:2xf(x)+x2f′(x)<x3,
即[x2f(x)]′<x3<0,
令F(x)=x2f(x),
则当x<0时,
得F′(x)<0,即F(x)在(-∞,0)上是减函数,
∴F(x+2016)=(x+2016)2f(x+2016),F(-1)=f(-1),
即不等式等价为F(x+2016)-F(-1)>0,
∵F(x)在(-∞,0)是减函数,
∴由F(x+2016)>F(-1)得,x+2016<-1,
即x<-2017,
故选:D.
点评 本题主要考查不等式的解法,利用条件构造函数,利用函数单调性和导数之间的关系是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{\sqrt{7}}{4}$ | C. | $\frac{2}{3}$ | D. | $\frac{\sqrt{5}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{1}{e}$) | B. | (0,$\frac{1}{e}$) | C. | (-∞,e) | D. | (e,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π | B. | $\frac{4}{3}π$ | C. | 3π | D. | 4π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 月份x | 1 | 2 | 3 | 4 |
| 用水量y | 4.5 | a | 3 | 2.5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com