精英家教网 > 高中数学 > 题目详情
2.命题p:?x∈R,|x+3|+|x-1|+a≤0.若此命题是假命题,则实数a的取值范围是(-4,+∞)(用区间表示)

分析 根据特称命题的性质,以及绝对值不等式的解法进行求解.

解答 解:若:?x∈R,|x+3|+|x-1|+a≤0是假命题,
则:?x∈R,|x+3|+|x-1|+a>0是真命题,
即|x+3|+|x-1|>-a是真命题,
∵|x+3|+|x-1|≥|-3-1|=4,
∴-a<4,即a>-4.
故答案为:(-4,+∞)

点评 本题主要考查特称命题的应用,利用绝对值不等式的解法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x
(1)求函数f(x)的最大值,以及取到最大值时所对应的x的集合;
(2)|f(x)-m|<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知m、n是不重合的直线,α、β是不重合的平面,则下列命题正确的是(  )
A.若m?α,n∥α,则m∥nB.若m∥α,m∥β,则α∥β
C.若α∩β=n,m∥n,则m∥βD.若m⊥α,m⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.倾斜角为$\frac{3π}{4}$且经过点P(1,-2)的直线l的方程为x+y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a是实数,函数f(x)=2ax2+2x-3在x∈[-1,1]上恒小于零,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某种产品的广告费支出x与销售额y(单位:百万元)之间有如表对应数据:
x24568
y3040605070
(1)求回归直线方程;
(2)试预测广告费支出为10百万元时,销售额多大?
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{∑({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知sinθ、cosθ是$2{x^2}-({\sqrt{3}+1})x+m=0$的两根,且$θ∈({0\;,\frac{π}{2}})$
(1)求m;
(2)求θ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.关于函数f(x)=2sin(2x+$\frac{π}{6}$)下列结论:
①f(x)的最小正周期是π;
②f(x)在区间[-$\frac{π}{6}$,$\frac{π}{6}$]上单调递增;
③函数f(x)的图象关于点($\frac{π}{12}$,0)成中心对称图形;
④当x=2kπ+$\frac{5}{12}$π,k∈z时f(x)取最大值.
其中成立的结论序号为①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知OPQ是半径为$\sqrt{7}$圆心角为$\frac{π}{3}$的扇形,C是该扇形弧上的动点,ABCD是扇形的内接矩形,记∠BOC为α.
(Ⅰ)若Rt△CBO的周长为$\frac{{\sqrt{7}(2\sqrt{10}+5)}}{5}$,求$\frac{3-cos2α}{co{s}^{2}α-sinαcosα}$的值.
(Ⅱ)求$\overrightarrow{OA}•\overrightarrow{AB}$的最大值,并求此时α的值.

查看答案和解析>>

同步练习册答案