【题目】已知函数().
(1)若函数存在极大值和极小值,求的取值范围;
(2)设,分别为的极大值和极小值,若存在实数,使得,求的取值范围.
【答案】(1);(2).
【解析】
试题分析:(1)求出函数的导数,函数存在极大值和极小值,故方程有两个不等的正实数根,列出不等式组,即可求解的取值范围;(2)由得,且.由(1)知存在极大值和极小值,设的两根为,(),则在上递增,在上递减,在上递增,所以,,根据可把表示为关于的表达式,再借助的范围即可求解的取值范围.
试题解析:(1),其中
由于函数存在极大值和极小值,故方程有两个不等的正实数根,
即有两个不等的正实数根记为,,显然
所以解得.
(2)由得,且.由(1)知存在极大值和极小值.
设的两根为,(),则在上递增,在上递减,在上递增,所以,.
因为,所以,而且,
由于函数在上单调递减,所以.
又由于(),所以().
所以
令,则,令
所以,
所以在上单调递减,所以
由,知,所以,
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC—A1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C.
求证:(1)EF∥平面ABC;
(2)平面A1FD⊥平面BB1C1C.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用反证法证明“自然数a,b,c中恰有一个偶数”时,下列假设正确的是 ( )
A.假设a,b,c都是奇数或至少有两个偶数
B.假设a,b,c都是偶数
C.假设a,b,c至少有两个偶数
D.假设a, b,c都是奇数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个四棱锥的三视图如图所示.
(1)求证:PA⊥BD;
(2)在线段PD上是否存在一点Q,使二面角Q-AC-D的平面角为30°?若存在,求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知圆的极坐标方程为,直线的参数方程为(为参数).若直线与圆相交于不同的两点,.
(Ⅰ)写出圆的直角坐标方程,并求圆心的坐标与半径;
(Ⅱ)若弦长,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用反证法证明“a,b,c中至少有一个大于0”,下列假设正确的是
A. 假设a,b,c都小于0
B. 假设a,b,c都大于0
C. 假设a,b,c中至多有一个大于0
D. 假设a,b,c中都不大于0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com