【题目】已知两直线l1:x+8y+7=0和l2:2x+y﹣1=0.
(1)求l1与l2交点坐标;
(2)求过l1与l2交点且与直线x+y+1=0平行的直线方程.
科目:高中数学 来源: 题型:
【题目】制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
分别是焦距为
的椭圆
的左、右顶点,
为椭圆
上非顶点的点,直
线的斜率分别为
,且
.
(1)求椭圆
的方程;
(2)直线
(与
轴不重合)过点
且与椭圆
交于
两点,直线
与
交于点
,试求
点的轨迹是否是垂直
轴的直线,若是,则求出
点的轨迹方程,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,平面![]()
平面
,
//
,
,
,且
,
.
(1)求证:
平面
;
(2)求
和平面
所成角的正弦值;
(3)在线段
上是否存在一点
使得平面![]()
平面
,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生对“两个一百年”奋斗目标、实现中华民族伟大复兴中国梦的“关注度”(单位:天),某中学团委组织学生在十字路口采用随机抽样的方法抽取了80名青年学生(其中男女人数各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组青年学生的月“关注度”分为6组:
,
,
,
,
,
,得到如图所示的频率分布直方图.
![]()
(1)求
的值;
(2)现从“关注度”在
的男生与女生中选取3人,设这3人来自男生的人数为
,求
的分布列与期望;
(3)在抽取的80名青年学生中,从月“关注度”不少于25天的人中随机抽取2人,求至少抽取到1名女生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某金匠以黄金为原材料加工一种饰品,经多年的数据统计得知,该金匠平均每加5 个饰品中有4个成品和1个废品,每个成品可获利3万元,每个废品损失1万元,假设该金匠加工每件饰品互不影响,以频率估计概率.
(1)若金金匠加工4个饰品,求其中废品的数量不超过1的概率;
(2)若该金匠加工了 3个饰品,求他所获利润的数学期望.
(两小问的计算结果都用分数表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆C:
的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60°,
. ![]()
(1)求椭圆C的离心率;
(2)如果|AB|=
,求椭圆C的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com