精英家教网 > 高中数学 > 题目详情

定义在区间[a,b]上的连续函数y=f(x),如果?ξ∈[a,b],使得f(b)-f(a)=f'(ξ)(b-a),则称ξ为区间[a,b]上的“中值点”.下列函数:
①f(x)=3x+2;  ②f(x)=x2-x+1;  ③f(x)=ln(x+1);  ④数学公式
在区间[0,1]上“中值点”多于一个的函数序号为________.(写出所有满足条件的函数的序号)

①④
分析:根据题意,“中值点”的几何意义是在区间[0,1]上存在点,使得函数在该点的切线的斜率等于区间[0,1]的两个端点连线的斜率值.分别画出四个函数的图象,如图.由此定义再结合函数的图象与性质,对于四个选项逐个加以判断,即得正确答案.
解答:解:根据题意,“中值点”的几何意义是在区间[0,1]上存在点,使得函数在该点的切线的斜率等于区间[0,1]的两个端点连线的斜率值.如图.
对于①,根据题意,在区间[0,1]上的任何一点都是“中值点”,故①正确;
对于②,根据“中值点”函数的定义,抛物线在区间[0,1]只存在一个“中值点”,故②不正确;
对于③,f(x)=ln(x+1)在区间[0,1]只存在一个“中值点”,故③不正确;
对于④,根据对称性,函数在区间[0,1]存在两个“中值点”,故④正确.
故答案为:①④.
点评:本题以命题真假的判断为载体,着重考查了导数及其几何意义等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=f(x)是定义在区间[a,b]上,值域为[-3,5]的增函数,则下列说法不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下面给出的4个命题:
①已知命题p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
<0
,则?p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
≥0

②函数f(x)=2-x-sinx在[0,2π]上恰好有2个零点;
③对于定义在区间[a,b]上的连续不断的函数y=f(x),存在c∈(a,b),使f(c)=0的必要不充分条件是f(a)f(b)<0;
④对于定义在R上的函数f(x),若实数x0满足f(x0)=x0,则称x0是f(x)的不动点.若f(x)=x2+ax+1不存在不动点,则a的取值范围是(-1,3).
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•眉山一模)定义在区间[a,b]上的连续函数y=f(x),如果?ξ∈[a,b],使得f(b)-f(a)=f'(ξ)(b-a),则称ξ为区间[a,b]上的“中值点”.下列函数:
①f(x)=3x+2;   ②f(x)=x2-x+1;   ③f(x)=ln(x+1);   ④f(x)=(x-
12
)3

在区间[0,1]上“中值点”多于一个的函数序号为
①④
①④
.(写出所有满足条件的函数的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)定义在区间[a,b]的长度为b-a,用[x]表示不超过x的最大整数.设f(x)=[x](x-[x]),g(x)=x-1,则0≤x≤2012时,不等式f(x)≤g(x)的解集的区间长度为
2011
2011

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)定义在区间[a,b]上,设“min{f(x)|x∈D}”表示函数f(x)在集合D上的最小值,“max{f(x)|x∈D}”表示函数f(x)在集合D上的最大值.现设f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),
若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为区间[a,b]上的“第k类压缩函数”.
(Ⅰ) 若函数f(x)=x3-3x2,x∈[0,3],求f(x)的最大值,写出f1(x),f2(x)的解析式;
(Ⅱ) 若m>0,函数f(x)=x3-mx2是[0,m]上的“第3类压缩函数”,求m的取值范围.

查看答案和解析>>

同步练习册答案