精英家教网 > 高中数学 > 题目详情
函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式ex·f(x)>ex+1的解集为(  ).
A.
B.
C.
D.
A
构造函数g(x)=ex·f(x)-ex,因为g′(x)=ex·f(x)+ex·f′(x)-ex=ex[f(x)+f′(x)]-ex>ex-ex=0,所以g(x)=ex·f(x)-ex为R上的增函数.又因为g(0)=e0·f(0)-e0=1,所以原不等式转化为g(x)>g(0),解得x>0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,其中的函数图象在点处的切线平行于轴.
(1)确定的关系;    (2)若,试讨论函数的单调性;
(3)设斜率为的直线与函数的图象交于两点)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,现要在边长为的正方形内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为不小于)的扇形花坛,以正方形的中心为圆心建一个半径为的圆形草地.为了保证道路畅通,岛口宽不小于,绕岛行驶的路宽均不小于.

(1)求的取值范围;(运算中
(2)若中间草地的造价为,四个花坛的造价为,其余区域的造价为,当取何值时,可使“环岛”的整体造价最低?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数为常数),当时取极大值,当时取极小值,则的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=-xln x+ax在(0,e)上是增函数,函数g(x)=|ex-a|+,当x∈[0,ln 3]时,函数g(x)的最大值M与最小值m的差为,则a=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数yf(x)(x∈R)的图象如图所示,则不等式xf′(x)<0的解集为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=mx2+ln x-2x在定义域内是增函数,则实数m的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)的导函数f′(x),且满足f(x)=2xf′(1)+ln x,则f′(1)=(   ).
A.-e B.-1 C.1 D.e

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=.
(1)函数f(x)在点(0,f(0))的切线与直线2xy-1=0平行,求a的值;
(2)当x∈[0,2]时,f(x)≥恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案