精英家教网 > 高中数学 > 题目详情
已知函数为常数),当时取极大值,当时取极小值,则的取值范围是(  )
A.B.C.D.
D

试题分析:因为函数的导数为.又由于当时取极大值,当时取极小值.所以即可得,因为的范围表示以圆心的半径的平方的范围.通过图形可得过点A最大,过点B最小,通过计算可得的取值范围为.故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知:函数.
(1)函数的图像在点处的切线的倾斜角为,求的值;
(2)若存在使,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设命题P:函数在区间[-1,1]上单调递减;
命题q:函数的定义域为R.若命题p或q为假命题,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)在x=1处的导数为3,则f(x)的解析式可能为 (  ).
A.f(x)=(x-1)2+3(x-1)
B.f(x)=2(x-1)
C.f(x)=2(x-1)2
D.f(x)=x-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=ex+2x,若f′(x)≥a恒成立,则实数a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)是定义域为R的奇函数,f(-4)=-1,f(x)的导函数f′(x)的图像如图X18-1所示.若两正数a,b满足f(a+2b)<1,则的取值范围是(  )
A.B.(-∞,-1)C.(-1,0)D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,下面不等式在R上恒成立的是(  )
A.f(x)>0 B.f(x)<0
C.f(x)>x D.f(x)<x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a∈R,函数f(x)=+ln x-1.
(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)求f(x)在区间(0,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式ex·f(x)>ex+1的解集为(  ).
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案