精英家教网 > 高中数学 > 题目详情

 设函数存在极值点

(1)求的取值范围;

(2)证明:有且只有一个在区间内;

(3)若上分别递增,求的取值范围.

 

 

 

【答案】

 解:(1)

      

  (2)

   (3)

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b、c分别是先后掷一枚质地均匀的正方体骰子三次得到的点数.
(1)求使函数f(x)=
1
3
bx3+
1
2
(a+c)x2+(a+c-b)x-4
在R上不存在极值点的概率;
(2)设随机变量ξ=|a-b|,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省广州市高三3月毕业班综合测试(一)理科数学试卷(解析版) 题型:解答题

(本小题满分14分)

已知二次函数,关于的不等式的解集为,其中为非零常数.设.

(1)求的值;

(2)R如何取值时,函数存在极值点,并求出极值点;

(3)若,且,求证:N

 

查看答案和解析>>

同步练习册答案