精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=x2在区间[x0,x0+△x]上的变化率为a,与在x=x0处瞬时变化率b的关系是(  )
A.a>bB.a=bC.a<bD.不能确定

分析 利用平均变化率的意义即可得出a,利用瞬时变化率的意义即可得出b,判断即可.

解答 解:函数y=x2在区间[[x0,x0+△x]上的平均变化率a=$\frac{({x}_{0}+△x)^{2}-{{x}_{0}}^{2}}{△x}$=△x+2x0
f(x)=x2,则f′(x)=2x,
∴在x=x0处瞬时变化率b=f′(x0)=2x0
∴a>b,
故选:A.

点评 本题考查了平均变化率的意义,瞬时变化率的意义及其求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lg(x+$\sqrt{{x}^{2}+1}$).
(1)求f(x)的定义域;
(2)求f(x)的反函数f-1(x);
(3)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设集合A为不等式1ogx(5x2-8x+3)>2的解集,集合B为不等式2${\;}^{{x}^{2}-2x-{k}^{4}}$≥$\frac{1}{2}$的解集.
(1)求集合A,B;
(2)如果A⊆B,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知两向量$\overrightarrow{a}$=(4,3)与2$\overrightarrow{a}$+$\overrightarrow{b}$=(3,18),求向量$\overrightarrow{b}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过点A(4,-a)和点B(6,b)的直线与直线y=-x+m垂直,则以AB为直径的圆的方程可以是(  )
A.x2+y2-10x+17=0B.x2+y2-2y-1=0
C.x2+y2-8x-4y+12=0D.x2+y2-10x-2y+24=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=3cos2($\frac{π}{8}$x+$\frac{π}{5}$)-2,若对任意的x∈R都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线ax+by=1与圆x2+y2=$\frac{1}{4}$相交于不同的A,B两点(其中a,b是实数),且|AB|<$\frac{\sqrt{2}}{2}$,则a2+b2-2a的取值范围为(  )
A.(1,10+4$\sqrt{2}$)B.(1,6+3$\sqrt{2}$)C.(0,6+3$\sqrt{2}$)D.(0,8+4$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中.角A,B,C的对边分别为a,b,c,已知$\frac{b}{a}$=$\frac{\sqrt{5}}{2}$,cosB=$\frac{\sqrt{5}}{5}$.
(I)求sinA;
(2)若c=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知c>0,设命题p:函数y=cx为减函数,命题q:当x∈[1,4]时函数$f(x)=x+\frac{4}{x}>\frac{1}{c}$恒成立,如果p且q为真命题,求c的取值范围.

查看答案和解析>>

同步练习册答案