精英家教网 > 高中数学 > 题目详情
求证下列等式成立:
n
R=1
R(R+1)=
n(n+1)(n+2)
3
考点:综合法与分析法(选修)
专题:证明题,点列、递归数列与数学归纳法
分析:利用数学归纳法进行证明即可.
解答: 证明:①n=1时,左边=2,右边=2,结论成立;
②设n=k时,结论成立,即,则
k
R=1
R(R+1)
=
k(k+1)(k+2)
3

n=k+1时,
k+1
R=1
R(R+1)
=
k(k+1)(k+2)
3
+(k+1)(k+2)=(k+1)(k+2)(1+
k
3
)=
(k+1)(k+2)(k+3)
3
,结论成立,
由①②可知,
n
R=1
R(R+1)=
n(n+1)(n+2)
3
点评:本题考查数学归纳法,考查学生分析解决问题的能力,正确运用数学归纳法是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算下列各式:
(Ⅰ)lg5•lg20+(lg2)2
(Ⅱ)0.027- 
1
3
-(-
1
6
-2+2560.75-
1
3
+(
1
9
0

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2+2,g(x)=4x-1的定义域都是集合A,函数f(x)和g(x)的值域分别为S和T.
(Ⅰ)若A=[1,2],求S∩T;
(Ⅱ)若A=[1,m](m>1),且S=T,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)与双曲线
x2
2
-y2=1有公共焦点,且离心率为
3
2
.问:以此椭圆的上顶点B为直角顶点作椭圆的内接等腰直角△ABC,这样的直角三角形是否存在?若存在,请说明有几个;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x|x-1|-blnx+m,(b,m∈R)
(Ⅰ)当b=3时,判断函数f(x)在[l,+∞)上的单调性;
(Ⅱ)记h(x)=f(x)+blnx,当m>1时,求函数y=h(x)在[0,m]上的最大值;
(Ⅲ)当b=1时,若函数f(x)有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
k(x-1)
x

(1)当k=e时,求函数h(x)=f(x)-g(x)的单调区间和极值;
(2)若f(x)≥g(x)恒成立,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市居民自来水收费标准如下:每户每月用水量不超过25吨时,按每吨3.2元收费;当每户每月用水量超过25吨时,其中25吨按每吨为3.2元收费,超过25吨的部分按每吨4.80元收费.设每户每月用水量为x吨,应交水费y元.
(1)求y关于x的函数关系;
(2)某用户1月份用水量为30吨,则1月份应交水费多少元?
(3)若甲、乙两用户1月用水量之比为5:3,共交水费228.8元,分别求出甲、乙两用户该月的用水量和水费.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a1、a2、a3、a4四个数,a1、a2、a3成等差数列,a2、a3、a4成等比数列,a1+a4=12,a2+a3=9,求a1、a2、a3、a4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为(  )
A、
x2
4
-
y2
5
=1
B、
x2
5
-
y2
4
=1
C、
x2
3
-
y2
6
=1
D、
x2
6
-
y2
3
=1

查看答案和解析>>

同步练习册答案