精英家教网 > 高中数学 > 题目详情
对任意的实数α、β,下列等式恒成立的是(  )
A.2sinα•cosβ=sin(α+β)+sin(α-β)
B.2cosα•sinβ=sin(α+β)+cos(α-β)
C.cosα+cosβ=2sin
α+β
2
•sin
α-β
2
D.cosα-cosβ=2cos
α+β
2
•cos
α-β
2
sin(α+β)+sin(α-β)=sinαcosβ+cosαsinβ+sinαcosβ-cosαsinβ=2sinαcosβ,
故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、已知如果函数f(x)满足:对任意的实数a,b,都有f(a+b)=f(a)•f(b),且f(1)=2,则f(0)+f(3)=
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知对任意的实数m,直线x+y+m=0都不与曲线f(x)=x3-3ax(a∈R)相切.
(I)求实数a的取值范围;
(II)当x∈[-1,1]时,函数y=f(x)的图象上是否存在一点P,使得点P到x轴的距离不小于
14
.试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+ax+b(a、b为实常数),已知不等式|f(x)|≤|2x2+4x-6|对任意的实数x均成立.定义数列{an}和{bn}:a1=3,2an=f(an-1)+3(n=2,3,…),bn=
1
2+an
(n=1,2,…)
,数列{bn}的前n项和Sn
(I)求a、b的值;
(II)求证:Sn
1
3
(n∈N*)

(III )求证:an22n-1-1(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
=(λcosα,λsinα)(λ≠0)
OB
=(-sinβ,cosβ)
,其中O为坐标原点,若|
BA
|≥2|
OB
|对任意的实数α,β都成立,则实数λ的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,等式f(x)f(y)=f(x+y)恒成立.若数列{an}满足a1=f(0),且f(an+1)=
1f(-2-an)
(n∈N*)
,则a2010的值为
 

查看答案和解析>>

同步练习册答案