精英家教网 > 高中数学 > 题目详情
19.设函数f(x)=|2x-1|,x∈R.
(Ⅰ)求不等式|f(x)-2|≤5的解集;
(Ⅱ)若g(x)=$\frac{1}{f(x)+f(x-1)+m}$的定义域为R,求实数m的取值范围.

分析 (Ⅰ)不等式|f(x)-2|≤5,即|2x-1|≤7,即-7≤2x-1≤7,由此求得不等式的解集.
(Ⅱ)由题意可得f(x)+f(x-1)+m≠0 恒成立,即|x-$\frac{1}{2}$|+|x-$\frac{3}{2}$|≠-$\frac{m}{2}$恒成立.根据绝对值的意义求得|x-$\frac{1}{2}$|+|x-$\frac{3}{2}$|的最小值为1,可得-$\frac{m}{2}$<1,由此求得m的范围.

解答 解:(Ⅰ)不等式|f(x)-2|≤5,即-5≤f(x)-2≤5,即-3≤f(x)≤7,即|2x-1|≤7,
即-7≤2x-1≤7,求得-3≤x≤4,故不等式的解集为{x|-3≤x≤4}.
(Ⅱ)若g(x)=$\frac{1}{f(x)+f(x-1)+m}$的定义域为R,则f(x)+f(x-1)+m≠0 恒成立,
即|2x-1|+|2(x-1)-1|≠-m,即|x-$\frac{1}{2}$|+|x-$\frac{3}{2}$|≠-$\frac{m}{2}$恒成立.
根据绝对值的意义,|x-$\frac{1}{2}$|+|x-$\frac{3}{2}$|表示数轴上的x对应点到$\frac{1}{2}$、$\frac{3}{2}$对应点的距离之和,它的最小值为1,
故-$\frac{m}{2}$<1,求得m>-2.

点评 本题主要考查绝对值的意义,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,则f(2x)等于(  )
A.2f(x)B.2[f(x)+g(x)]C.2g(x)D.2f(x)•g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{2+|x-2|,}&{x≥0}\\{{x}^{2}}&{x<0}\end{array}\right.$,当函数g(x)=k-f(x)有三个零点时,实数k的取值范围是(  )
A.<k<2B.k≥2C.2<k≤4D.2≤k≤4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.幂函数f(x)=k•xα的图象过点$(\frac{1}{3},\frac{{\sqrt{3}}}{3})$,则k+α=(  )
A.$\frac{1}{3}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a,b∈R+,函数f(x)=alog2x+b的图象经过点(4,1),则$\frac{1}{a}$+$\frac{2}{b}$的最小值为(  )
A.6-2$\sqrt{2}$B.6C.4+2$\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若直线a∥直线b,直线b∥平面α,则a与α的位置关系是a∥α或a?α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数y=x${\;}^{\frac{1}{5}}$,y=x${\;}^{\frac{1}{4}}$,y=x${\;}^{-\frac{2}{3}}$,y=x${\;}^{-\frac{1}{2}}$中,定义域为{x∈R|x>0}的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=logm(x2+4x+4a+1)(m>0,且m≠1)对于任意x∈[0,+∞)都有意义.
(1)求实数a的取值范围;
(2)在函数上是否存在不同的两点,使过这两点的直线平行于x轴?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(2x+3)的定义域为(0,1),求y=f(2x-1)的定义域为(2,3).

查看答案和解析>>

同步练习册答案