精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\left\{\begin{array}{l}{2+|x-2|,}&{x≥0}\\{{x}^{2}}&{x<0}\end{array}\right.$,当函数g(x)=k-f(x)有三个零点时,实数k的取值范围是(  )
A.<k<2B.k≥2C.2<k≤4D.2≤k≤4

分析 根据函数和方程之间的关系转化为y=k与y=f(x)有三个交点,利用数形结合进行求解即可.

解答 解:由g(x)=k-f(x)=0得k=f(x),即方程k=f(x)有3个根,
则等价为y=k与y=f(x)有三个交点,
作出f(x)的图象如图:
要使y=k与y=f(x)有三个交点,
则2<k≤4,
故选:C.

点评 本题主要考查函数与方程的应用,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设a=tan$\frac{3}{4}$π,b=cos$\frac{π}{4}$,c=(1+sin$\frac{6}{5}$π)0,则a,b,c的大小关系是(  )
A.c>b>aB.c>a>bC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD的底面ABCD是正方形,PA⊥平面ABCD,AP=AD=1,点E在PC上,且PE=$\frac{1}{2}$EC,点F是PD的中点.
(1)求证:PC⊥AF;
(2)求三棱锥A-CEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面几何里,“若CD是Rt△ABC的斜边AB上的高,则$\frac{1}{{C{D^2}}}=\frac{1}{{C{A^2}}}+\frac{1}{{C{B^2}}}$.”拓展到空间,研究三棱锥的高与侧棱间的关系,可得出的正确结论是:“若三棱锥A-BCD的三侧面ABC、ACD、ADB两两互相垂直,AO是三棱锥A-BCD的高,则$\frac{1}{{A{O^2}}}=\frac{1}{{A{B^2}}}+\frac{1}{{A{C^2}}}+\frac{1}{{A{D^2}}}$”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知二次函数的图象过点(-3,0),(1,0),且顶点到x轴的距离等于2,则此二次函数的表达式为y=$\frac{1}{2}{x^2}+x-\frac{3}{2}$,或y=-$\frac{1}{2}{x^2}-x+\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的离心率为$\frac{1}{2}$,则双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$的渐近线方程为(  )
A.$y=±\frac{{\sqrt{3}}}{2}x$B.$y=±\frac{{2\sqrt{3}}}{3}x$C.$y=±\frac{1}{2}x$D.y=±x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(x,-2),且$\overrightarrow{a}$+$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$平行,则实数x的值等于(  )
A.-4B.4C.-6D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=|2x-1|,x∈R.
(Ⅰ)求不等式|f(x)-2|≤5的解集;
(Ⅱ)若g(x)=$\frac{1}{f(x)+f(x-1)+m}$的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=$\frac{x+2}{x-1}$(x≠1)在区间[2,5)上的最大值、最小值分别是(  )
A.$\frac{7}{4}$,4B.无最大值,最小值7
C.4,0D.最大值4,无最小值

查看答案和解析>>

同步练习册答案