精英家教网 > 高中数学 > 题目详情
已知双曲线与抛物线有一个公共的焦点,且两曲线的一个交点为,若,则双曲线的渐近线方程为               .

试题分析:由抛物线y2=8x得出其焦点坐标,由|PF|=5结合抛物线的定义得出点P的坐标,从而得到双曲线的关于a,b 的方程,求出a,b的值,进而求出双曲线的渐近线方程。解:抛物线y2=8x得出其焦点坐标(2,0)故双曲线的c=2,又|PF|=5,设P(m,n),则|PF|=m+2∴m+2=5,m=3,∴点P的坐标(3,± )∴a 2+b 2=4,解得:a 2=1,b 2=3则双曲线的渐近线方程为故答案为
点评:本题主要考查了抛物线的简单性质,双曲线的简单性质,抛物线的定义等.解答的关键是学生对圆锥曲线基础知识掌握的熟练程度.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点到两点的距离之和等于4,设点的轨迹为,直线与轨迹交于两点.
(Ⅰ)写出轨迹的方程;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点是椭圆)的左焦点,点分别是椭圆的左顶点和上顶点,椭圆的离心率为,点轴上,且,过点作斜率为的直线与由三点,确定的圆相交于两点,满足

(1)若的面积为,求椭圆的方程;
(2)直线的斜率是否为定值?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线与椭圆有相同焦点,且经过点,求其方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的准线方程是               

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.
(Ⅰ)若,求外接圆的方程;
(Ⅱ)若直线与椭圆相交于两点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点,动点满足.
(1)求动点P的轨迹方程; 
(2)设(1)中所求轨迹与直线交于点两点 ,求证(为原点)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为椭圆)的两个焦点,过F2作椭圆的弦AB,若的周长为16,椭圆的离心率,则椭圆的方程为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的离心率为
A.B.C.D.

查看答案和解析>>

同步练习册答案