精英家教网 > 高中数学 > 题目详情
如图,点是椭圆)的左焦点,点分别是椭圆的左顶点和上顶点,椭圆的离心率为,点轴上,且,过点作斜率为的直线与由三点,确定的圆相交于两点,满足

(1)若的面积为,求椭圆的方程;
(2)直线的斜率是否为定值?证明你的结论.
(1)
(2)

试题分析:解:(1)由已知可得, 2分

解得.     3分
所求椭圆方程为.    4分
(2)由 得,则   5分
  则(斜率显然存在且不为零)     6分

,则
得  ,所以                     7分
则圆心的坐标为,半径为               8分
据题意 直线的方程可设为 ,即      9分
 得          10分
,得,而
所以                           11分
在等腰三角形中 由垂径定理可得点到直线的距离为.      12分
则                          13分
解得  而 故 (定值)           14分
点评:主要是考查了直线与椭圆的位置关系的运用,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点,且垂直于椭圆的长轴,动直线垂直于,垂足为点,线段的垂直平分线交于点,求点的轨迹的方程;
(3)设轴交于点,不同的两点上(也不重合),且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线的焦点恰为双曲线的右焦点,且两曲线交点的连线过点,则双曲线的离心率为  (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点,动点到定点距离与到定点的距离的比值是.
(Ⅰ)求动点的轨迹方程,并说明方程表示的曲线;
(Ⅱ)当时,记动点的轨迹为曲线.
①若是圆上任意一点,过作曲线的切线,切点是,求的取值范围;
②已知是曲线上不同的两点,对于定点,有.试问无论两点的位置怎样,直线能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的离心率为,双曲线的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆的方程为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图, 在等腰梯形ABCD中, AB//CD, 且AB="2CD," 设∠DAB=, ∈(0, ), 以A, B为焦点且过点D的双曲线的离心率为e1, 以C, D为焦点且过点A的椭圆的离心率为e2, 设
的大致图像是 (    )
  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的左焦点为,点为双曲线右支上一点,且与圆相切于点为线段的中点,为坐标原点, 则=       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线

(I)
(II)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线与抛物线有一个公共的焦点,且两曲线的一个交点为,若,则双曲线的渐近线方程为               .

查看答案和解析>>

同步练习册答案