精英家教网 > 高中数学 > 题目详情
15.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充要条件是(  )
A.0≤a≤21B.a=0或 a=7C.a<0或a>21D.a=0或a=21

分析 由于函数f(x)=x3+ax2+7ax(x∈R)不存在极值,可得f′(x)≥0恒成立,求解出一元二次不等式即可得到a的取值范围.

解答 解:∵函数f(x)=x3+ax2+7ax(x∈R),
∴f′(x)=3x2+2ax+7a,
∵函数f(x)=x3+ax2+7ax(x∈R)不存在极值,且f′(x)的图象开口向上,
∴f′(x)≥0对x∈R恒成立,
∴△=4a2-84a≤0,
解得0≤a≤21,
∴a的取值范围是0≤a≤21.
故选:A.

点评 本题考查了利用导数研究函数的极值,解题时要注意运用极值点必定是导函数对应方程的根,而导函数对应方程的根不一定是极值点.考查了转化化归的数学思想方法.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,在△AOB中,点A(2,1),B(3,0),点E在射线OB上自O开始向右移动.设OE=x,过E作OB的垂线l,记△AOB在直线l左边部分的面积为S,试写出S与x的函数关系式,并画出大致的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,且过点$A({1,\frac{3}{2}})$.
(1)求椭圆C的方程;
(2)若点B在椭圆上,点D在y轴上,且$\overrightarrow{BD}$=2$\overrightarrow{DA}$,求直线AB方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中,真命题是(  )
A.?x0∈[0,$\frac{π}{2}$],sin x0+cos x0≥2B.?x∈(3,+∞),x2>2x+1
C.?x0∈R,x02+x0=-1D.?x∈($\frac{π}{2}$,π),tan x>sin x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若a1,a2,a3,a4∈R+,有以下不等式成立:$\frac{{{a_1}+{a_2}}}{2}≥\sqrt{{a_1}{a_2}}$,$\frac{{{a_1}+{a_2}+{a_3}}}{3}≥\root{3}{{{a_1}{a_2}{a_3}}}$,$\frac{{{a_1}+{a_2}+{a_3}+{a_4}}}{4}≥\root{4}{{{a_1}{a_2}{a_3}{a_4}}}$.由此推测成立的不等式是$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}≥\root{n}{{a}_{1}{a}_{2}…{a}_{n}}$(当且仅当a1=a2=…=an时取等号).(要注明成立的条件)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在25件同类产品中,有2件次品,从中任取3件产品,其中不可能事件为(  )
A.3件都是正品B.至少有1次品C.3件都是次品D.至少有1件正品

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)是偶函数,当x>0时,f(x)=-x(1+x),当x<0时,f(x)=x(1-x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)的定义域为(0,+∞),当x>1时,f(x)>0,且对于任意正数x,y都有f(xy)=f(x)+f(y).
(1)证明:函数f(x)在定义域上是单调增函数;
(2)如果f(${\frac{1}{3}}$)=-1且f(x)-f(${\frac{1}{x-2}}$)≥2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数f(x)=xlnx,g(x)=x3+ax2-x+2.
(1)若a=-1,求函数y=g(x)图象过点p(1,1)的切线方程;
(2)若?x0∈(0,+∞),使关于x的不等式2f(x)≥g′(x)+2成立,求实数a取值范围.

查看答案和解析>>

同步练习册答案