精英家教网 > 高中数学 > 题目详情
函数f(x)=
ax+b
1+x2
是定义在(-1,1)上的奇函数,且f(
1
2
)=
2
5

(1)确定函数的解析式;
(2)证明函数f(x)在(-1,1)上是增函数;
(3)解不等式f(t-1)+f(t)<0.
分析:(1)根据奇函数性质有f(0)=0,可求出b,由f(
1
2
)=
2
5
可求得a值.
(2)根据函数单调性的定义即可证明;
(3)根据函数的奇偶性、单调性可去掉不等式中的符号“f”,再考虑到定义域可得一不等式组,解出即可.
解答:解:(1)因为f(x)为(-1,1)上的奇函数,所以f(0)=0,即b=0.
又f(
1
2
)=
2
5
,所以
1
2
a
1+
1
4
=
2
5
,解得a=1.
所以f(x)=
x
1+x2

(2)设-1<x1<x2<1,
则f(x1)-f(x2)=
x1
1+x12
-
x2
1+x22
=
(x1-x2)(1-x1x2)
(1+x12)(1+x22)

因为-1<x1<x2<1,所以x1-x2<0,1-x1x2>0,
所以f(x1)-f(x2)<0,即f(x1)<f(x2).
所以函数f(x)在(-1,1)上是增函数;
(3)f(t-1)+f(t)<0可化为f(t-1)<-f(t).
又f(x)为奇函数,所以f(t-1)<f(-t),
f(x)为(-1,1)上的增函数,所以t-1<-t①,且-1<t-1<1②,-1<t<1③;
联立①②③解得,0<t<
1
2

所以不等式f(t-1)+f(t)<0的解集为(0,
1
2
)
点评:本题考查函数的奇偶性、单调性及抽象不等式的求解,定义是解决函数单调性、奇偶性常用方法,而抽象不等式常利用性质转化为具体不等式处理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
ax+2b
1+x2
是定义在(-1,1)上的奇函数,且f(1)=
1
2

(1)求函数f(x)的解析式;
(2)讨论函数f(x)的单调性;
(3)解不等式f(2-t)+f(
t
5
)<0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax,(x<0)
(a-3)x+4a,(x≥0)
满足对任意的实数x1≠x2都有
f(x1)-f(x2)
x1-x2
<0
成立,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(-1,1)上的函数f(x)=
ax+b
1+x2
为奇函数,且f(
1
2
)=
2
5

(1)求实数a,b的值;
(2)用定义证明:函数f(x)在区间(-1,1)上是增函数;
(3)解关于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax-1x+1
,  其中 a∈R

(1)当a=1时,求函数满足f(x)≤1时的x的集合;
(2)求a的取值范围,使f(x)在区间(0,+∞)上是单调减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
a-1x
 (a∈R)
,g(x)=lnx.
(1)若对任意的实数a,函数f(x)与g(x)的图象在x=x0处的切线斜率总相等,求x0的值;
(2)若a>0,对任意x>0,不等式f(x)-g(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案