精英家教网 > 高中数学 > 题目详情
(2013•大连一模)已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)
的图象(部分)如图所示,则ω,φ分别为(  )
分析:由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值.
解答:解:由函数的图象可得A=2,根据
1
4
T
=
1
4
ω
=
5
6
-
1
3
=
1
2
,求得ω=π.
再由五点法作图可得 π×
5
6
+φ=π,解得φ=
π
6

故选C.
点评:本题主要考查由函数y=Asin(ωx+∅)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•大连一模)设集合A={2,lnx},B={x,y},若A∩B={0},则y的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大连一模)选修4-5:不等式选讲
已知f(x)=|2x-1|+ax-5(a是常数,a∈R)
(Ⅰ)当a=1时求不等式f(x)≥0的解集.
(Ⅱ)如果函数y=f(x)恰有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大连一模)定义在R上的函数f(x)满足f(3)=1,f(-2)=3,f′(x)为f(x)的导函数,已知y=f′(x)的图象如图所示,且f′(x)有且只有一个零点,若非负实数a,b满足f(2a+b)≤1,f(-a-2b)≤3,则
b+2
a+1
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大连一模)球面上有四个点P、A、B、C,若PA,PB,PC两两互相垂直,且PA=PB=PC=1,则该球的表面积是

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大连一模)设复数z=
1-i
1+i
,则z为(  )

查看答案和解析>>

同步练习册答案