精英家教网 > 高中数学 > 题目详情
(2011•上海)已知抛物线F:y2=4x
(1)△ABC的三个顶点在抛物线F上,记△ABC的三边AB、BC、CA所在的直线的斜率分别为kAB,kBC,kCA,若A的坐标在原点,求kAB-kBC+kCA的值;
(2)请你给出一个以P(2,1)为顶点、其余各顶点均为抛物线F上的动点的多边形,写出各多边形各边所在的直线斜率之间的关系式,并说明理由.
分析:(1)设B(x1,y1),C(x2,y2),把B、C点左边代入抛物线方程,利用斜率公式计算kAB-kBC+kCA的值即可;
(2)先研究△PBC,四边形PBCD,五边形PBCDE,再研究n=2k,n=2k-1(k∈N,k≥2)边形的情形,最后研究n边形P1P2…Pn(k∈N,k≥3),按由特殊到一般的思路逐步得到结论;
解答:解:(1)设B(x1,y1),C(x2,y2),
x12=4y1x22=4y2
∴kAB-kBC+kCA=
y1
x1
-
y2-y1
x2-x1
+
y2
x2
=
1
4
x1
-
1
4
(x1+x2)
+
1
4
x2
=0;
(2)①研究△PBC,
kPB-kBC+kCP=
yB-yP
xB-xP
-
yC-yB
xC-xB
+
yP-yC
xP-xC
=
xP+xB
4
-
xB+xC
4
+
xC+xP
4
=
xP
2
=1;
②研究四边形PBCD,
kPB-kBC+kCD-kDP=
xP+xB
4
-
xB+xC
4
+
xC+xD
4
-
xD+xP
4
=0;
③研究五边形PBCDE,
kPB-kBC+kCD-kDE+kEP=
xP+xB
4
-
xB+xC
4
+
xC+xD
4
-
xD+xE
4
+
xE+xP
4
=
xP
2
=1;
④研究n=2k边形P1P2…P2k(k∈N,k≥2),其中P1=P,
kP1P2-kP2P3+kP3P4-…+(-1)2k-1kP2kP1=0,
证明:左边=
1
4
(xP1+xP2)-
1
4
(xP2+xP3)+…
+(-1)2k-1
1
4
(xP2k +xP1)
=
xP1
4
[1+(-1)2k-1]
=
1+(-1)2k-1
2
=0=右边;
⑤研究n=2k-1边形P1P2…P2k-1(k∈N,k≥2),其中P1=P,
kP1P2-kP2P3+kP3P4-…+(-1)2k-2kP2k-1P1=1,
证明:左边=
1
4
(xP1+xP2)-
1
4
(xP2+xP3)+…
+(-1)2k-1-1
1
4
(xP2k-1+xP1)
=
xP1
4
[1+(-1)2k-1-1]
=
1+(-1)2k-1-1
2
=1=右边;
⑥研究n边形P1P2…Pn(k∈N,k≥3),其中P1=P,
kP1P2-kP2P3+kP3P4-…+(-1)n-1kPnP1=
1+(-1)n-1
2

证明:左边=
1
4
(xP1+xP2)-
1
4
(xP2+xP3)+…
+(-1)n-1
1
4
(xPn+xP1)
=
xP1
4
[1+(-1)n-1]=
1+(-1)n-1
2
=右边.
点评:本题考查直线斜率、直线与圆锥曲线的位置关系,考查学生逻辑推理能力及探究问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•上海)已知向量
a
=(sin2x-1,cosx),
b
=(1,2cosx),设函数f(x)=
a
b
,求函数f(x)的最小正周期及x∈[0,
π
2
]时的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知0<a<1,则函数y=a|x|-|logax|的零点的个数为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知n∈N*,则
lim
n→∞
n2+n+1
3n-2
=
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)为了研究某种癌细胞的繁殖规律和一种新型抗癌药物的作用,将癌细胞注入一只小白鼠体内进行实验,经检测,癌细胞的繁殖规律与天数的关系如下表.已知这种癌细胞在小白鼠体内的个数超过108时小白鼠将会死亡,注射这种抗癌药物可杀死其体内癌细胞的98%.
天数t 1 2 3 4 5 6 7
癌细胞个数N 1 2 4 8 16 32 64
(1)要使小白鼠在实验中不死亡,第一次最迟应在第几天注射该种药物?(精确到1天)
(2)若在第10天,第20天,第30天,…给小白鼠注射这种药物,问第38天小白鼠是否仍然存活?请说明理由.

查看答案和解析>>

同步练习册答案