![]()
(1)当a为何值时,BD⊥平面PAC?试证明你的结论.
(2)当a=4时,求D点到平面PBC的距离.
(3)当a=4时,求直线PD与平面PBC所成的角.
剖析:本题主要考查棱锥的性质,直线、平面所成的角的计算和点到平面的距离等基础知识.同时考查空间想象能力、逻辑推理能力和计算能力.
解:(1)以A为坐标原点,以AD、AB、AP所在直线分别为x轴、y轴、z轴建立空间直角坐标系,当a=2时,BD⊥AC,又PA⊥BD,故BD⊥平面PAC.故a=2.
(2)当a=4时,D(4,0,0)、C(0,2,0)、C(4,2,0)、P(0,0,2),
=(0,2,-2),
=(4,0,0).
设平面PBC的法向量为n,则n·
=0,n·
=0,即(x,y,z)·(0,2,-2)=0,(x,y,z)·(4,0,0)=0,得x=0,y=z,取y=1,故n=(0,1,1).则D点到平面PBC的距离d=
=
.
(3)
=(4,0,2),cos〈
,n〉=
=
>0,证〈
,n〉=α,设直线PD与平面PBC所成的角为θ,则sinθ=sin(
-α)=cosα=
.
所以直线PD与平面PBC所成的角为arcsin
.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com