将函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整个图象沿x轴向左平移个单位,得到的曲线与y=sinx图象相同,则y=f(x)的函数表达式为( ).
A.y=sin
B.y=sin2
C.y=sin
D.y=sin
科目:高中数学 来源:陕西省铁一中2012届高三第二次模拟考试数学理科试题 题型:044
已知平面向量=(cos,sin),=(cosx,sinx),=(sin,-cos),其中0<<π,且函数f(x)=(·)cosx+(·)sinx的图象过点(,1).
(1)求的值;
(2)将函数y=f(x)图象上各点的横坐标变为原来的的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在[0,]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源:河北省衡水中学2012届高三上学期五调考试数学理科试题 题型:044
设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)将函数y=f(x)图象向右平移一个单位即可得到函数y=φ(x)的图象,试写出y=φ(x)的解析式及值域;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:广东省揭阳第一中学2012届高三第一次阶段考试数学文科试题 题型:044
设函数
f(x)=a2x2(a>0),g(x)=blnx.(1)
将函数y=f(x)图象向右平移一个单位即可得到函数y=φ(x)的图象,试写出y=φ(x)的解析式及值域;(2)
关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;(3)
对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=2sin(2x+),将函数y=f(x)图象上各点的纵坐标保持不变,横坐标先缩短到原来的倍,把所得图象再向左平移个单位,得到函数y=g(x)的图象,求y=g(x)在x∈[0,]上的最小值.
查看答案和解析>>
科目:高中数学 来源:2013届广东省六校联合体高二元月联考理科数学(解析版) 题型:填空题
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在x=取得最大值2,且函数的最小正周期为2.现将函数y=f(x)图象上各点的横坐标缩小为原来的,纵坐标不变,再把函数图像向右平移个单位,得到函数y=g(x)的图象,则
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com