精英家教网 > 高中数学 > 题目详情
3.已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F分别是线段AB,BC的中点.
(1)证明:PF⊥FD;
(2)若PA=1,求点E到平面PFD的距离.

分析 (1)连接AF,通过计算利用勾股定理证明DF⊥AF,证明DF⊥PA,推出DF⊥平面PAF,然后证明DF⊥PF.
(2)利用等体积方法,求点E到平面PFD的距离.

解答 (1)证明:连接AF,则AF=$\sqrt{2}$,DF=$\sqrt{2}$,
又AD=2,∴DF2+AF2=AD2,∴DF⊥AF,
又PA⊥平面ABCD,∴DF⊥PA,又PA∩AF=A,
∴DF⊥平面PAF,
又PF?平面PAF,
∴DF⊥PF.
(2)解:∵S△EFD=2-$\frac{5}{4}$=$\frac{3}{4}$,
∴VP-EFD=$\frac{1}{3}×\frac{3}{4}×1$=$\frac{1}{4}$,
∵VE-PFD=VP-AFD
∴$\frac{1}{3}×\frac{\sqrt{6}}{2}h=\frac{1}{4}$,解得h=$\frac{\sqrt{6}}{4}$,即点E到平面PFD的距离为$\frac{\sqrt{6}}{4}$.

点评 本题考查直线与平面垂直的判定定理以及性质定理的应用,点到平面的距离距离的求法,考查计算能力以及空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在△ABC中,AH⊥BC于H,点D满足$\overrightarrow{BD}$=2$\overrightarrow{DC}$,若|$\overrightarrow{AH}$|=$\sqrt{2}$,则$\overrightarrow{AH}$•$\overrightarrow{AD}$=(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a=sin$\frac{π}{5}$,b=log${\;}_{\sqrt{2}}$$\sqrt{3}$,c=($\frac{1}{4}$)${\;}^{\frac{2}{3}}$,则(  )
A.a<c<bB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”,已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是(  )
A.10日B.20日C.30日D.40日

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知i为虚数单位,则复数$\frac{1}{1+i}$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知圆C1:x2+y2=4,圆C2:x2+y2+6x-8y+16=0,则圆C1和圆C2的位置关系是(  )
A.相离B.外切C.相交D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,已知圆C:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}}\right.$(θ为参数),点P在直线l:x+y-4=0上,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系.
( I)求圆C和直线l的极坐标方程;
( II)射线OP交圆C于R,点Q在射线OP上,且满足|OP|2=|OR|•|OQ|,求Q点轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}满足a1=2,且$\frac{a_1}{2}+\frac{a_2}{3}+\frac{a_3}{4}+…+\frac{{{a_{n-1}}}}{n}={a_n}-2(n≥2)$,则{an}的通项公式为an=n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将一颗骰子掷两次,则第二次出现的点数是第一次点数的2倍的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{18}$C.$\frac{1}{2}$D.$\frac{1}{12}$

查看答案和解析>>

同步练习册答案