精英家教网 > 高中数学 > 题目详情
8.已知圆C1:x2+y2=4,圆C2:x2+y2+6x-8y+16=0,则圆C1和圆C2的位置关系是(  )
A.相离B.外切C.相交D.内切

分析 把圆的方程化为标准形式,求出圆心和半径,根据两圆的圆心距等于半径之和,可得两个圆关系.

解答 解:圆C1:x2+y2=4,表示以C1(0,0)为圆心,半径等于2的圆.
圆C2:x2+y2+6x-8y+16=0,即 (x+3)2+(y-4)2=9,表示以C2(-3,4)为圆心,半径等于3的圆.
∴两圆的圆心距d=$\sqrt{9+16}$=5=2+3,
∵两个圆外切.
故选:B.

点评 本题主要考查圆的标准方程,圆和圆的位置关系,圆的标准方程的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若复数z满足(3-4i+z)i=2+i,则复数z所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>2,b>2,直线$y=-\frac{b}{a}x+b$与曲线(x-1)2+(y-1)2=1只有一个公共点,则ab的取值范围为(  )
A.$(4,6+4\sqrt{2})$B.$(4,6+4\sqrt{2}]$C.$[6+4\sqrt{2},+∞)$D.$(6+4\sqrt{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,椭圆C和抛物线y2=x交于M,N两点,且直线MN恰好通过椭圆C的右焦点.
(I)求椭圆C的标准方程;
(II)A为椭圆的右顶点,经过原点的直线和椭圆C交于B,D两点,设直线AB与AD的斜率分别为k1,k2.问k1•k2是否为定值?若为定值,请求出;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F分别是线段AB,BC的中点.
(1)证明:PF⊥FD;
(2)若PA=1,求点E到平面PFD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某单位280名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示.
( I)现要从年龄低于40岁的员工中用分层抽样的方法抽取12人,则年龄在第1,2,3组的员工人数分别是多少?
( II)为了交流读书心得,现从上述12人中再随机抽取3人发言,设3人中年龄在[35,40)的人数为ξ,求ξ的数学期望;
( III)为了估计该单位员工的阅读倾向,现对从该单位所有员工中按性别比例抽取的40人做“是否喜欢阅读国学类书籍”进行调查,调查结果如下表所示:(单位:人)
喜欢阅读国学类 不喜欢阅读国学类 合计
 男 14 4 18
 女 8 14 22
 合计 22 18 40
根据表中数据,我们能否有99%的把握认为该单位员工是否喜欢阅读国学类书籍和性别有关系?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=cosxsin2x,以下四个结论:
①f(x)既是偶函数,又是周期函数;
②f(x)图象关于直线x=π对称;
③f(x)图象关于$(\frac{π}{2},0)$中心对称;
④f(x)的最大值$\frac{4}{9}\sqrt{3}$.
其中,正确的结论的序号是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设复数z满足$\frac{z+1}{z-2}=1-3i$,则|z|=(  )
A.5B.$\sqrt{5}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若等差数列{an}的前n项和Sn有最大值,且$\frac{{a}_{11}}{{a}_{10}}$<-1,那么令Sn取最小正值的项数n=(  )
A.15B.17C.19D.21

查看答案和解析>>

同步练习册答案