精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=ex-ax-1(a∈R)
(1)若a>0,求函数y=f(x)的单调区间;
(2)谈论函数F(x)=f(x)-xlnx内的零点的个数.

分析 (1)先求出函数的导数,根据当a>0时的情况从而得出结论,
(2)f(x)-xlnx定义域为(0,+∞),由F(x)=0⇒a=$\frac{{e}^{x}-1}{x}$-lnx,x>0,令h(x)=$\frac{{e}^{x}-1}{x}$-lnx,x>0,求出函数的导数,x>0,从而h(x)≥h(1)=e-1,由ex-1>x?$\frac{{e}^{x}-1}{x}$>1,进而得出结论.

解答 解:(1)由f(x)=ex-1-ax,
∴f′(x)=ex-a,
当a>0时,f′(x)>0⇒x>ln,f′(x)<0⇒x<lna,
∴函数f(x)的单调增区间为(lna,+∞),单调减区间为(-∞,lna);
(2)函数F(x)=f(x)-xlnx定义域为(0,+∞),
又F(x)=0⇒a=$\frac{{e}^{x}-1}{x}$-lnx,x>0,
令h(x)=$\frac{{e}^{x}-1}{x}$-lnx,x>0,
则h′(x)=$\frac{{(e}^{x}-1)(x-1)}{{x}^{2}}$,x>0,
∴h′(x)>0⇒x>1,h′(x)<0⇒0<x<1,
故函数h(x)在(0,1)上单调递减,在(1,+∞)上单调递增.
∴h(x)≥h(1)=e-1,
有由(1)知当a=1时,对?x>0,有f(x)>f(lna)=0,
即ex-1>x?$\frac{{e}^{x}-1}{x}$>1,
∴当x>0且x趋向0时,h(x)趋向+∞,
随着x>0的增长,y=ex-1的增长速度越来越快,会超过并远远大于y=x2的增长速度,
而y=lnx的增长速度则会越来越慢.
故当x>0且x趋+∞时,h(x趋向+∞.
得到函数h(x)的草图如图所示:
故①当a>e-1时,函数F(x)有两个不同的零点;
③当a=e-1时,函数F(x)有且仅有一个零点;
③当a<e-1时,函数F(x)无零点.

点评 本题考察了函数的单调性,导数的应用,函数的零点的判判定,渗透了分类讨论思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知全集U=R,集合A={x|0<2x+4<10},B={x|x<-4,或x>2},C={x|x2-4ax+3a2<0,a<0},
(1)求A∪B;
(2)若∁U(A∪B)⊆C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列四个命题:
①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件
②“当x为某一实数时可使x2<0”是不可能事件
③“明天安顺要下雨”是必然事件
④“从100个灯泡中取出5个,5个都是次品”是随机事件.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.三个数a=60.7,b=0.76,c=log0.56的大小顺序是(  )
A.b<c<aB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集U={0,1,2,3,4},集合M={0,3,4},N={0,1,2},则集合{1,2}可以表示为(  )
A.M∩NB.(∁UM)∩NC.M∩(∁UN)D.(∁UM)∩(∁UN)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)=x3-ax在区间$(-\frac{1}{2},0)$上单调递减,则实数a的取值范围为[$\frac{3}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a、b为两条不同的直线,α、β为两个不同的平面.下列命题中,正确的是(  )
A.若a⊥α,b∥β,a⊥b,则α⊥βB.若a⊥α,b∥β,a∥b,则α⊥β
C.若a⊥α,a⊥β,则α⊥βD.若a∥β,b∥β,a∥b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a,b,c分别为△ABC三个内角A,B,C的对边,a=4,A=60°,B=45°,则边b的值为(  )
A.2$\sqrt{6}$B.2+2$\sqrt{2}$C.$\frac{4\sqrt{6}}{3}$D.2$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.过点(2,0)且与直线x-2y-1=0垂直的直线方程是(  )
A.x-2y-2=0B.x-2y+2=0C.2x+y-4=0D.x+2y-2=0

查看答案和解析>>

同步练习册答案