精英家教网 > 高中数学 > 题目详情

数列{}中,及前n项和满足关系式=(2n-1),求

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等比数列{an}中,已知a1=2,a4=16
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在各项均为正数的数列{an}中,前n项和Sn满足2Sn+1=an(2an+1),n∈N*
(1)证明{an}是等差数列,并求这个数列的通项公式及前n项和的公式;
(2)在平面直角坐标系xoy面上,设点Mn(xn,yn)满足an=nxn,Sn=n2yn,且点Mn在直线l上,Mn中最高点为Mk,若称直线l与x轴.直线x=a,x=b所围成的图形的面积为直线l在区间[a,b]上的面积,试求直线l在区间[x3,xk]上的面积;
(3)若存在圆心在直线l上的圆纸片能覆盖住点列Mn中任何一个点,求该圆纸片最小面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
,且当x=
1
2
时,函数f(x)=
1
2
anx2-an+1•x
取得极值.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足:b1=2,bn+1-2bn=
1
an+1
,证明:{
bn
2n
}
是等差数列,并求数列{bn}的通项公式通项及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,已知a1=3,a4=12,
(I)求数列{an}的通项公式;
(Ⅱ)若a2,a4分别为等比数列{bn}的第1项和第2项,试求数列{bn}的通项公式及前n项和Sn

查看答案和解析>>

同步练习册答案