精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
,点P(b,
a
2
)
在椭圆上,其左、右焦点为F1、F2
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若
PF1
PF2
=
1
2
,过点S(0,-
1
3
)
的动直线l交椭圆于A、B两点,请问在y轴上是否存在定点M,使以AB为直径的圆恒过这个定点?若存在,求出点M的坐标;若不存在,请说明理由.
分析:(Ⅰ)利用椭圆C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
,点P(b,
a
2
)
在椭圆上,建立方程,确定几何量的关系,即可求得椭圆的离心率;
(Ⅱ)先求椭圆的标准方程,再由特殊情况猜想M(0,1),进而证明一般性的结论成立.
解答:解:(Ⅰ)∵椭圆C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
,点P(b,
a
2
)
在椭圆上,
b2
a2
+
a2
4b2
=1
,∴a2=2b2,∴c2=a2-b2=b2
e=
c
a
=
2
2

(Ⅱ)∵
PF1
PF2
=
1
2

∴(-c-b,-
a
2
)•(c-b,-
a
2
)=
1
2

b2-c2+
a2
4
=
1
2

∴a=
2
,b=1
∴椭圆方程为
x2
2
+y2=1

假设存在定点M,使以AB为直径的圆恒过这个点.
当AB⊥x轴时,以AB为直径的圆的方程为:x2+y2=1①
当AB⊥y轴时,以AB为直径的圆的方程为:x2+(y+
1
3
2=
16
9

由①,②知定点M(0,1)
下证:以AB为直径的圆恒过定点M(0,1).
设直线l:y=kx-
1
3
,代入椭圆方程,消去y可得(2k2+1)x2-
4
3
kx
-
16
9
=0
设A(x1,y1),B((x2,y2),则x1+x2=
4k
3(2k2+1)
,x1x2=
-16
9(2k2+1)

MA
=(x1y1-1)
MB
=(x2y2-1)

MA
MB
=x1x2+(y1-1)(y2-1)=(1+k2)x1x2-
4
3
k(x1+x2)+
16
9
=0
∴在x轴上存在定点M(0,1),使以AB为直径的圆恒过这个定点.
点评:本题考查椭圆的几何性质,考查椭圆的标准方程,考查存在性问题,由特殊到一般是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:x2+
y2
m
=1
的焦点在y轴上,且离心率为
3
2
.过点M(0,3)的直线l与椭圆C相交于两点A、B.
(1)求椭圆C的方程;
(2)设P为椭圆上一点,且满足
OA
+
OB
OP
(O为坐标原点),当|
PA
|-|
PB
|<
3
时,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
经过 点B(0,
3
)
,且离心率为
1
2
,右顶点为A,左右焦点分别为F1,F2;椭圆C2以坐标原点为中心,且以F1F2为短轴端,上顶点为D.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)若C1与C2交于M、N、P、Q四点,当AD∥F2B时,求四边形MNPQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C经过点A(1 
3
2
)
,且经过双曲线y2-x2=1的顶点.P是该椭圆上的一个动点,F1,F2是椭圆的左右焦点,
(1)求椭圆C的方程;
(2)求|PF1|•|PF2|的最大值和最小值.
(3)求
PF1
PF2
的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知椭圆C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的两个焦点分别为F1(-1,0),F2(1,0),长半轴长为
2

(1)(i)求椭圆C的方程;
(ii)类比结论“过圆
x
2
 
+
y
2
 
=r2
上任一点(x0,y0)的切线方程是x0x+yy0=
r
2
 
”,归纳得出:过椭圆
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
上任一点(x0,y0)的切线方程是
x0x
a
2
 
+
y0y
b
2
 
=1
x0x
a
2
 
+
y0y
b
2
 
=1

(2)设M,N是直线x=2上的两个点,若
F1M
F2M
=0,求|MN|
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
,F1、F2分别为椭圆c的左右焦点,点P在椭圆C上(不是顶点),△PF1F2内一点G满足3
PG
=
PF1
+
PF2
,其中
OG
=(
1
9
a,
6
9
a)

(I)求椭圆C的离心率;
(Ⅱ)若椭圆C短轴长为2
3
,过焦点F2的直线l与椭圆C相交于A、B两点(A、B不是左右顶点),若
AF2
=2
F2B
,求△F1AB面积.

查看答案和解析>>

同步练习册答案