精英家教网 > 高中数学 > 题目详情

已知⊙F1数学公式数学公式,在⊙F1上取点P,连接PF2,作出线段PF2的垂直平分线交PF1于M,当点P在⊙F1上运动时M形成曲线C.(如图)
(1)求曲线C的轨迹方程.
(2)过点F2的直线l交曲线C于R,T两点,满足|RT|=数学公式,求直线l的方程.
(3)点Q在曲线C上,且满足数学公式,求数学公式

解:(1)由题意有|PM|=|F2M|
∴|MF1|+|MF2|=|PF1|=4
∴点M的轨迹是以F1、F2为焦点的椭圆.
其方程为
(2)设l的方程为
(若l的斜率不存在,则,∴|RT|=1,不合题意)
代入x2+4y2-4=0整理有
设R(x1,y1),T(x2,y2
椭圆右准线方程为:,离心率
过R、T作右准线的垂线,设垂足分别为R2、T2,则
=

解之有
∴l的方程为
(3)|QF1|+|QF2|=4
∴12=|QF1|2+|QF2|2-|QF1|•|QF2|
而|QF1|+|QF2|=4,
∴|QF1|2+|QF2|2+2|QF1|•|QF2|=16
∴12=16-2|QF1|•|QF2|-|QF1|•|QF2|

∴S△F1F2Q===
分析:(1)由题意有|PM|=|F2M|从而有|MF1|+|MF2|=|PF1|=4,根据椭圆的定义得点M的轨迹是以F1、F2为焦点的椭圆.再写出其方程即可;
(2)设l的方程为,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用线段的比例关系即可求得k值,从而解决问题.
(3)根据三角形中的余弦定理可得12=|QF1|2+|QF2|2-|QF1|•|QF2|而|QF1|+|QF2|=4,从而得出
最后利用三角形的面积公式求解即得.
点评:本小题主要考查椭圆的定义、直线与圆锥曲线的综合问题、直线的方程等基础知识,考查运算求解能力,考查数形结合思想、方程思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1、F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,右焦点F2(c,0)到上顶点的距离为2,若a2=
6
c,
(1)求此椭圆的方程;
(2)点A是椭圆的右顶点,直线y=x与椭圆交于M、N两点(N在第一象限内),又P、Q是此椭圆上两点,并且满足(
NP
|
NP
|
+
NQ
|
NQ
|
)•
F1F2
=0
,求证:向量
PQ
AM
共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的中心在坐标原点,两个焦点分别为F1(-2,0),F2(2,0),点A(2,3)在椭圆C1上,求椭圆C1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点,在此椭圆上存在点P,使∠F1PF2=60°,且|PF1|=2|PF2|,则此椭圆的离心率为(  )

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市第二外国语学校高二(上)期中数学试卷(文科)(解析版) 题型:解答题

已知⊙F1,在⊙F1上取点P,连接PF2,作出线段PF2的垂直平分线交PF1于M,当点P在⊙F1上运动时M形成曲线C.(如图)
(1)求曲线C的轨迹方程.
(2)过点F2的直线l交曲线C于R,T两点,满足|RT|=,求直线l的方程.
(3)点Q在曲线C上,且满足,求

查看答案和解析>>

同步练习册答案