精英家教网 > 高中数学 > 题目详情

某商品每件成本5元,售价14元,每星期卖出75件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比,已知商品单价降低1元时,一星期多卖出5件.
(1)将一星期的商品销售利润表示成的函数;
(2)如何定价才能使一个星期的商品销售利润最大?

(1);(2)当即商品每件定价为9元时,可使一个星期的商品销售利润最大.

解析试题分析:(1)先写出多卖的商品数,则可计算出商品在一个星期的获利数,再依题意:“商品单价降低1元时,一星期多卖出5件”求出比例系数,即可得一个星期的商品销售利润表示成的函数;(2)根据(1)中得到的函数,利用导数研究其极值,也就是求出函数的极大值,从而得出定价为多少元时,能使一个星期的商品销售利润最大.
试题解析:(1)依题意,设,由已知有,从而
                      3分

              7分
(2)         9分
,由
可知函数上递减,在递增,在上递减        11分
从而函数取得最大值的可能位置为或是

时,                     13分
答:商品每件定价为9元时,可使一个星期的商品销售利润最大      14分.
考点:1.函数模型及其应用;2.导数的实际应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

f(x)=2x3ax2bx+1的导数为f′(x),若函数yf′(x)
的图象关于直线x=-对称,且f′(1)=0.
①求实数ab的值;②求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求证:时,恒成立;
(2)当时,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点,且1是其中一个零点.
(1)求b的值      (2)求f(2)的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=ln(x2+1),g(x)=x2.
(1)求F(x)=f(x)-g(x)的单调区间,并证明对[-1,1]上的任意x1,x2,x3,都有F(x1)+F(x2)>F(x3);
(2)将y=f(x)的图像向下平移a(a>0)个单位,同时将y=g(x)的图像向上平移b(b>0)个单位,使它们恰有四个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0,函数f(x)=ax2-ln x.
(1)求f(x)的单调区间;
(2)当a=时,证明:方程f(x)=f 在区间(2,+∞)上有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=+xln x,g(x)=x3-x2-3.
(1)如果存在x1,x2∈[0,2]使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;
(2)如果对于任意的s,t∈,都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=axx2g(x)=xln aa>1.
(1)求证:函数F(x)=f(x)-g(x)在(0,+∞)上单调递增;
(2)若函数y-3有四个零点,求b的取值范围;
(3)若对于任意的x1x2∈[-1,1]时,都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013·重庆卷)设f(x)=a(x-5)2+6ln x,其中a∈R,曲线yf(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

同步练习册答案