精英家教网 > 高中数学 > 题目详情

已知函数f(x)=axx2g(x)=xln aa>1.
(1)求证:函数F(x)=f(x)-g(x)在(0,+∞)上单调递增;
(2)若函数y-3有四个零点,求b的取值范围;
(3)若对于任意的x1x2∈[-1,1]时,都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范围.

(1)见解析(2)(2-,0)∪(2+,+∞)(3)(1,e2]

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(ax2-2xa)·ex.
(1)当a=1时,求函数f(x)的单调区间;
(2)设g(x)=-a-2,h(x)=x2-2x-ln x,若x>1时总有g(x)<h(x),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商品每件成本5元,售价14元,每星期卖出75件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比,已知商品单价降低1元时,一星期多卖出5件.
(1)将一星期的商品销售利润表示成的函数;
(2)如何定价才能使一个星期的商品销售利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若存在单调递减区间,求实数的取值范围;
(2)若,求证:当时,恒成立;
(3)设,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=lnx-ax,g(x)=ex-ax,其中a为实数.
(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;
(2)若g(x)在(-1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2-(2a+1)x+2ln xa∈R.
(1)若曲线yf(x)在x=1和x=3处的切线互相平行,求a的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求函数的单调区间;
(2)若以函数图像上任意一点为切点的切线的斜率恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln x-1.
(1)求函数f(x)的单调区间;
(2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式maf(x0)<0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的最小值;
(2)设
(ⅰ)证明:当时,的图象与的图象有唯一的公共点;
(ⅱ)若当时,的图象恒在的图象的上方,求实数的取值范围.

查看答案和解析>>

同步练习册答案