精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax2-(2a+1)x+2ln xa∈R.
(1)若曲线yf(x)在x=1和x=3处的切线互相平行,求a的值;
(2)求f(x)的单调区间.

(1)a(2)当a≤0时f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞).当0<a<时,f(x)的单调递增区间是(0,2)和,单调递减区间是.当a时,f(x)的单调递增区间是(0,+∞).f(x)的单调递增区间是(0,+∞).f(x)的单调递增区间是和(2,+∞),单调递减区间是

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知f(x)=x2-2x-ln(x+1)2.
(1)求f(x)的单调递增区间;
(2)若函数F(x)=f(x)-x2+3xa上只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0,函数f(x)=ax2-ln x.
(1)求f(x)的单调区间;
(2)当a=时,证明:方程f(x)=f 在区间(2,+∞)上有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的单调递增区间;
(2)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=axx2g(x)=xln aa>1.
(1)求证:函数F(x)=f(x)-g(x)在(0,+∞)上单调递增;
(2)若函数y-3有四个零点,求b的取值范围;
(3)若对于任意的x1x2∈[-1,1]时,都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y=xlnx+1.
(1)求这个函数的导数;
(2)求这个函数的图象在点x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若曲线经过点,曲线在点处的切线与直线垂直,求的值;
(2)在(1)的条件下,试求函数为实常数,)的极大值与极小值之差;
(3)若在区间内存在两个不同的极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像过坐标原点,且在点处的切线的斜率是
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点,使得是以为直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)当时,求的单调区间;
(Ⅱ)若当时,恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案