精英家教网 > 高中数学 > 题目详情

已知函数y=xlnx+1.
(1)求这个函数的导数;
(2)求这个函数的图象在点x=1处的切线方程.

(1)(2)

解析试题分析:(1)按公式直接求导即可。(2)根据导数的几何意义可求其切线斜率,用点斜式可求切线方程。
试题解析:解:(1)

         4分
(2)         6分
又当时,,所以切点为        8分
∴切线方程为,即         12分.
考点:1导数公式;2导数的几何意义。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数处取得极小值.
(1)若函数的极小值是,求
(2)若函数的极小值不小于,问:是否存在实数,使得函数上单调递减?若存在,求出的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+xsinx+cosx.
(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;
(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=aln(2x+1)+bx+1.
(1)若函数yf(x)在x=1处取得极值,且曲线yf(x)在点(0,f(0))处的切线与直线2xy-3=0平行,求a的值;
(2)若b,试讨论函数yf(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2-(2a+1)x+2ln xa∈R.
(1)若曲线yf(x)在x=1和x=3处的切线互相平行,求a的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-x3x2-2x(a∈R).
(1)当a=3时,求函数f(x)的单调区间;
(2)若对于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求实数a的取值范围;
(3)若过点可作函数y=f(x)图象的三条不同切线,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax3x2cxd(acd∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求acd的值;
(2)若h(x)=x2bx,解不等式f′(x)+h(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=exax-1.
(1)求f(x)的单调增区间;
(2)若f(x)在定义域R内单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求的单调区间;
(2)设函数,若当时,恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案