精英家教网 > 高中数学 > 题目详情

已知f(x)=x2-2x-ln(x+1)2.
(1)求f(x)的单调递增区间;
(2)若函数F(x)=f(x)-x2+3xa上只有一个零点,求实数a的取值范围.

(1)(-,-1)和(,+∞)(2)-2ln 2≤a<2ln 3-2或a=2ln 2-1.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在F1赛车中,赛车位移与比赛时间t存在函数关系s=10t+5t2(s的单位为m,t的单位为s).求:
(1)t=20s,Δt=0.1s时的Δs与
(2)t=20s时的瞬时速度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线yx2+1,求过点P(0,0)的曲线的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求垂直于直线2x-6y+1=0并且与曲线yx3+3x2-5相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(ax2-2xa)·ex.
(1)当a=1时,求函数f(x)的单调区间;
(2)设g(x)=-a-2,h(x)=x2-2x-ln x,若x>1时总有g(x)<h(x),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极小值.
(1)若函数的极小值是,求
(2)若函数的极小值不小于,问:是否存在实数,使得函数上单调递减?若存在,求出的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=,其中a为正实数.
(1)当a=时,求f(x)的极值点.
(2)若f(x)为[,]上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2 (x≠0,a∈R).
(1)判断函数f(x)的奇偶性;
(2)若f(x)在区间[2,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2-(2a+1)x+2ln xa∈R.
(1)若曲线yf(x)在x=1和x=3处的切线互相平行,求a的值;
(2)求f(x)的单调区间.

查看答案和解析>>

同步练习册答案