精英家教网 > 高中数学 > 题目详情
设a>0,函数
(Ⅰ)证明:存在唯一实数,使f(x)=x
(Ⅱ)定义数列{xn}:x1=0,xn+1=f(xn),n∈N*
(i)求证:对任意正整数n都有x2n-1<x<x2n
(ii) 当a=2时,若,证明:对任意m∈N*都有:
【答案】分析:第1问在一个区间有唯一零点需满足两个条件:(1)在这个区间单调;(2)区间端点函数值异号.第2问要利用数学归纳法证明,关键在于xn+1=f(xn)的应用.第3问要分k=1,k≥2,情况进行证明为m∈N*时证明做铺垫,在其中结合不等式证明方法中的放缩法进行适当的放缩,还有等比数列求和公式.
解答:解:(Ⅰ)证明:①f(x)=x?x3+ax-1=0.…(1分)
令h(x)=x3+ax-1,则h(0)=-1<0,
.…(2分)
又h′(x)=3x2+a>0,∴h(x)=x3+ax-1是R上的增函数.…(3分)
故h(x)=x3+ax-1在区间上有唯一零点,
即存在唯一实数使f(x)=x.…(4分)
(Ⅱ)(i)当n=1时,x1=0,,由①知,即x1<x<x2成立;…(5分)
设当n=k(k≥2)时,x2k-1<x<x2k,注意到在(0,+∞)上是减函数,且xk>0,
故有:f(x2k-1)>f(x)>f(x2k),即x2k>x>x2k+1
∴f(x2k)<f(x)<f(x2k+1),…(7分)
即x2k+1<x<x2k+2.这就是说,n=k+1时,结论也成立.
故对任意正整数n都有:x2n-1<x<x2n.…(8分)
(ii)当a=2时,由x1=0得:…(9分)
当k=1时,…(10分)
当k≥2时,∵
…(12分)
对?m∈N*
|xm+k-xk|=|(xm+k-xm+k-1)+(xm+k-1-xm+k-2)+…+(xk+1-xk)|≤|xm+k-xm+k-1|+|xm+k-1-xm+k-2|+…+|xk+1-xk|
…(13分)
=…(14分)
点评:本题考查了在一个区间有唯一零点需满足的条件,往往会出现只对端点函数值异号,而忽略单调的条件出现错误.第2问考查了数学归纳法证明,难点在于由 n=k时成立,如何得出n=k+1也成立.第3问难点在于|xm+k-xk|=|(xm+k-xm+k-1)+(xm+k-1-xm+k-2)+…+(xk+1-xk)|这个式子的得出.总体来说本题比较难.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>0,函数f(x)=x-a
x2+1
+a

(I)若f(x)在区间(0,1]上是增函数,求a的取值范围;
(Ⅱ)求f(x)在区间(0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,函数f(x)=x+
a2x
,g(x)=x-lnx
,若对任意的x1,x2∈[1,e],都有f(x1)≥g(x2)成立,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

22、设a>0,函数f(x)=x3-ax在[1,+∞)上是单调函数.
(1)求实数a的取值范围;
(2)设x0≥1,f(x0)≥1,且f(f(x0))=x0,求证:f(x0)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=exμ(x),
(I)若μ(x)=x2-
52
x+2的极小值;
(Ⅱ)若μ(x)=x2+ax-3-2a,设a>0,函数g(x)=(a2+14)ex+4,若存在ξ1,ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•深圳二模)定义 ρ(x,y)=|ex-y|-y|x-ln y|,其中 x∈R,y∈R+
(1)设 a>0,函数 f(x)=ρ(x,a),试判断 f( x) 在定义域内零点的个数;
(2)设 0<a<b,函数 F(x)=ρ(x,a)-ρ(x,b),求 F( x) 的最小值;
(3)记(2)中的最小值为T(a,b),若{an }是各项均为正数的单调递增数列,证明:
ni=1
T(ai,ai+1 )<(an+1-a1) ln 2.

查看答案和解析>>

同步练习册答案