精英家教网 > 高中数学 > 题目详情
(2013•四川)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是
(2,4)
(2,4)
分析:如图,设平面直角坐标系中任一点P,利用三角形中两边之和大于第三边得PA+PB+PC+PD=PB+PD+PA+PC≥BD+AC=QA+QB+QC+QD,从而得到四边形ABCD对角线的交点Q即为所求距离之和最小的点.再利用两点式方程求解对角线所在的直线方程,联立方程组求交点坐标即可.
解答:解:如图,设平面直角坐标系中任一点P,
P到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和为:PA+PB+PC+PD=PB+PD+PA+PC≥BD+AC=QA+QB+QC+QD,
故四边形ABCD对角线的交点Q即为所求距离之和最小的点.
∵A(1,2),B(1,5),C(3,6),D(7,-1),
∴AC,BD的方程分别为:
y-2
6-2
=
x-1
3-1
y-5
-1-5
=
x-1
7-1

即2x-y=0,x+y-6=0.
解方程组
2x-y=0
x+y-6=0
得Q(2,4).
故答案为:(2,4).
点评:本小题主要考查直线方程的应用、三角形的性质等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•四川)在△ABC中,角A、B、C的对边分别a、b、c,且2cos2
A-B
2
cosB-sin(A-B)sinB+cos(A+C)=-
3
5

(1)求cosA的值;
(2)若a=4
2
,b=5
,求向量
BA
BC
方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•四川)在平行四边形ABCD中,对角线AC与BD交于点O,
AB
+
AD
AO
,则λ=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•四川)在等比数列{an}中,a2-a1=2,且2a2为3a1和a3的等差中项,求数列{an}的首项、公比及前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•四川)在△ABC中,角A,B,C的对边分别为a,b,c,且cos(A-B)cosB-sin(A-B)sin(A+c)=-
3
5

(Ⅰ)求sinA的值;
(Ⅱ)若a=4
2
,b=5,求向量
BA
BC
方向上的投影.

查看答案和解析>>

同步练习册答案