精英家教网 > 高中数学 > 题目详情

【题目】某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为14万元/辆,年销售量为辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为(01),则出厂价相应提高的比例为0.6,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.

1)若年销售量增加的比例为0.5,为使本年度的年利润比上年度有所增加,则投入成本增加的比例应在什么范围内?

2)若年销售量关于的函数为为常数),则当为何值时,本年度的年利润最大?

【答案】1

2

【解析】

1)首先表示出本年度的年利润,根据原题中已知的年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量可表示出来.然后列出不等式得到x的取值范围;

2)根据题意,要使本年度的年利润最大,首先表示出本年度年利润的函数表达式,然后求出此函数的导数为零时x的值,由此判断出函数的单调性,可知此时的x值对应的函数值是函数的最大值.

解:(1)由题意得:本年度每辆车的投入成本为

出厂价为,年销售量为

则本年度的利润为:

,即所求的范围为

2)本年度的利润为

,解得

时,单调递增,

时,单调递减,

时,本年度的年利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在单位正方体中,点P在线段上运动,给出以下四个命题:

异面直线间的距离为定值;

三棱锥的体积为定值;

异面直线与直线所成的角为定值;

二面角的大小为定值.

其中真命题有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列说法正确的是______(填上所有正确命题序号).(1)的极大值点 ;(2)函数有且只有1个零点;(3)存在正实数,使得恒成立 ;(4)对任意两个正实数,且,若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)如图所示,是一个矩形花坛,其中米,米.现将矩形花坛扩建成一个更大的矩形花坛,要求:上,上,对角线点,且矩形的面积小于150平方米.

(1)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并确定函数的定义域;

(2)当的长度是多少时,矩形的面积最小?并求最小面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,两点为喷泉,圆心的中点,其中米,半径米,市民可位于水池边缘任意一点处观赏.

(1)若当时,,求此时的值;

(2)设,且

(i)试将表示为的函数,并求出的取值范围;

(ii)若同时要求市民在水池边缘任意一点处观赏喷泉时,观赏角度的最大值不小于试求两处喷泉间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:指数函数R上是单调减函数;命题q:关于x的方程有实根,

1)若p为真,求a的范围

2)若q为真,求的范围

3)若pq为真,pq为假,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:

甲说:作品获得一等奖”; 乙说:作品获得一等奖”;

丙说:两件作品未获得一等奖”; 丁说:作品获得一等奖”.

评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的图象在处的切线方程;

2)讨论函数的单调性;

3)当时,若方程有两个不相等的实数根,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有关于的一元二次方程

)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率.

)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

同步练习册答案