精英家教网 > 高中数学 > 题目详情
设f(x)=
x2,x∈[0,1]
2-x,x∈(1,2]
,则∫02f(x)dx=
 
分析:分段函数的积分必须分段求解,故先将原式化成∫01f(x)dx+∫12f(x)dx,再分别求各个和式的积分,最后只要求出被积函数的原函数,结合积分计算公式求解即可.
解答:解:∫02f(x)dx
=∫01f(x)dx+∫12f(x)dx
=∫01(x2)dx+∫12(2-x)dx
=
1
3
x3|01+( 2x-
1
2
x2)|12
=
1
3
+4-2-2+
1
2
=
5
6

∴∫02f(x)dx=
5
6

故答案为:
5
6
点评:本小题主要考查定积分、定积分的应用、导数等基础知识,考查运算求解能力、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)的定义域为D,值域为B,如果存在函数x=g(t),使得函数y=f(g(t))的值域仍然是B,那么称函数x=g(t)是函数y=f(x)的一个等值域变换.
有下列说法:
①若f(x)=2x+b,x∈R,x=t2-2t+3,t∈R,则x=g(t)不是f(x)的一个等值域变换;
②f(x)=|x|(x∈R),x=log3(t2+1),(t∈R),则x=g(t)是f(x)的一个等值域变换;
③若f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R,则x=g(t)是f(x)的一个等值域变换;
④设f(x)=log2x(x>0),若x=g(t)=5t+5-t+m是y=f(x)的一个等值域变换,且函数f(g(t))的定义域为R,则m的取值范围是m≤-2.
在上述说法中,正确说法的个数为(  )

查看答案和解析>>

科目:高中数学 来源:2007-2008学年浙江省温州市十校联合体高三(上)期末数学试卷(文科)(解析版) 题型:解答题

设f(x)是定义在R上的奇函数,g(x)与f(x)的图象关于直线x=1对称,若g(x)=a(x-2)-(x-2)3
(1)求f(x)的解析式;
(2)当x=1时,f(x)取得极值,证明:对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立;
(3)若f(x)是[1,+∞)上的单调函数,且当x≥1,f(x)≥1时,有f[f(x)]=x,求证:f(x)=x

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市房山区周口店中学高三(下)3月月考数学试卷(理科)(解析版) 题型:解答题

设f(x)是定义在R上的奇函数,g(x)与f(x)的图象关于直线x=1对称,若g(x)=a(x-2)-(x-2)3
(1)求f(x)的解析式;
(2)当x=1时,f(x)取得极值,证明:对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立;
(3)若f(x)是[1,+∞)上的单调函数,且当x≥1,f(x)≥1时,有f[f(x)]=x,求证:f(x)=x

查看答案和解析>>

科目:高中数学 来源:2012年浙江省高考数学冲刺试卷3(理科)(解析版) 题型:解答题

设f(x)是定义在R上的奇函数,g(x)与f(x)的图象关于直线x=1对称,若g(x)=a(x-2)-(x-2)3
(1)求f(x)的解析式;
(2)当x=1时,f(x)取得极值,证明:对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立;
(3)若f(x)是[1,+∞)上的单调函数,且当x≥1,f(x)≥1时,有f[f(x)]=x,求证:f(x)=x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(1)当f(x)的定义域为数学公式时,求f(x)的值域;
(2)试问对定义域内的任意x,f(2a-x)+f(x)的值是否为一个定值?若是,求出这个定值;若不是,说明理由;
(3)设函数g(x)=x2+|(x-a)f(x)|,若数学公式,求g(x)的最小值.

查看答案和解析>>

同步练习册答案