(本小题满分12分)
已知圆C的方程为x2+y2=4.
(1)求过点P(1,2)且与圆C相切的直线l的方程;
(2)直线l过点P(1,2),且与圆C交于A、B两点,若|AB|=2
,求直线l的方程.
(1)y=2或4x+3y-10=0(2)3x-4y+5=0或x=1
解析试题分析:(1)显然直线l的斜率存在,设切线方程为y-2=k(x-1),则由
=2得k1=0,k2=-
,故所求的切线方程为y=2或4x+3y-10=0.
(2)当直线l垂直于x轴时,此时直线方程为x=1,l与圆的两个交点的坐标为(1,
)和(1,-
),这两点的距离为2
,满足题意;
当直线l不垂直于x轴时,设其方程为y-2=k(x-1),即kx-y-k+2=0,设圆心到此直线的距离为d,则2
=2
,∴d=1,∴1=
,
∴k=
,此时直线方程为3x-4y+5=0.
综上所述,所求直线方程为3x-4y+5=0或x=1.
考点:直线与圆相切相交
点评:求圆的切线割线要注意考虑直线斜率不存在的情况
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
己知圆
直线
.
(1) 求与圆
相切, 且与直线
平行的直线
的方程;
(2) 若直线
与圆
有公共点,且与直线
垂直,求直线
在
轴上的截距
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
已知关于
的方程
:
.
(1)当
为何值时,方程C表示圆。
(2)若圆C与直线
相交于M,N两点,且|MN|=
,求
的值。
(3)在(2)条件下,是否存在直线
,使得圆上有四点到直线
的距离为
,若存在,求出
的范围,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)过点Q
作圆C:
的切线,切点为D,且QD=4.
(1)求
的值;
(2)设P是圆C上位于第一象限内的任意一点,过点P作圆C的切线l,且l交x轴于点A,交y 轴于点B,设
,求
的最小值(O为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(14分)在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x
-4)2+(y-5)2=4.
(1)若点M∈⊙ C1, 点N∈⊙C2,求|MN|的取值范围;
(2)若直线l过点A(4,0),且被圆C1截得的弦长为2
,求直线l的方程;
(3)设P为平面上的点,满足:存在过点P的无数多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com