精英家教网 > 高中数学 > 题目详情
已知方程x2+y2-2x-4y+m=0.
(1)若此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m的值.
分析:(1)由方程x2+y2-2x-4y+m=0配方为(x-1)2+(y-2)2=5-m.由于此方程表示圆,可得5-m>0,解出即可;
(2)设M(x1,y1),N(x2,y2).与圆的方程联立可得△>0及根与系数关系,再利用
OM
ON
,?
OM
ON
=x1x2+y1y2
=0,即可解出m.
解答:解:(1)由方程x2+y2-2x-4y+m=0变形为(x-1)2+(y-2)2=5-m.∵此方程表示圆,∴5-m>0,解得m<5,故m的取值范围是(-∞,5);
(2)设M(x1,y1),N(x2,y2).
联立
x2+y2-2x-4y+m=0
x+2y-4=0
化为5y2-16y+8+m=0,
∵直线与圆相交,∴△=162-20(8+m)>0,化为m<
24
5

∴y1+y2=
16
5
y1y2=
8+m
5

OM
ON
,∴
OM
ON
=x1x2+y1y2
=0,
又x1x2=(4-2y1)(4-2y2)=16-8(y1+y2)+4y1y2
∴5y1y2-8(y1+y2)+16=0,
∴8+m-
8×16
5
+16=0,
解得m=
8
5
,满足m<
24
5

故m=
8
5
点评:本题考查了直线与圆相交问题转化为方程联立得到△>0及根与系数关系、向量垂直与数量积的关系等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知方程x2+y2-x+4y+m=0.
(1)若此方程表示圆,求的取值范围;
(2)若(1)中的圆的直线x+2y-1=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;
(3)在(2)得条件下,求以MN为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2+kx+2y+k2=0所表示的圆有最大的面积,则直线y=(k+1)x+2的倾斜角α=
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围;
(3)求圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2+4x-2y-4=0,则x2+y2的最大值是
14+6
5
14+6
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2-2mx-4y+5m=0的曲线是圆C
(1)求m的取值范围;
(2)当m=-2时,求圆C截直线l:2x-y+1=0所得弦长;
(3)若圆C与直线2x-y+1=0相交于M,N两点,且以MN为直径的圆过坐标原点O,求m的值?

查看答案和解析>>

同步练习册答案