精英家教网 > 高中数学 > 题目详情
9.已知$|{\begin{array}{l}{x+3}&{x^2}\\ 1&4\end{array}}|<0$,则实数x的取值范围是(-∞,-2)∪(6,+∞).

分析 $|{\begin{array}{l}{x+3}&{x^2}\\ 1&4\end{array}}|<0$,即4(x+3)-x2<0,可化为(x+2)(x-6)>0,即可求出实数x的取值范围.

解答 解:$|{\begin{array}{l}{x+3}&{x^2}\\ 1&4\end{array}}|<0$,即4(x+3)-x2<0,可化为(x+2)(x-6)>0,
∴实数x的取值范围是(-∞,-2)∪(6,+∞),
故答案为(-∞,-2)∪(6,+∞).

点评 本题考查一元二次不等式的解法,考查学生的计算能力,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设x,y为非零实数,a>0,且a≠1,给出下列式子或运算:
①logax2=3logax;
②loga|xy|=loga|x|•loga|y|;
③若e=lnx,则x=e2
④若lg(lny)=0,则y=e;
⑤若${2^{1+{{log}_4}x}}$=16,则x=64.
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a,b是异面直线,P是a,b外的一点,有以下四个命题
①过P点一定存在直线l与a,b都相交;
②过P点一定存在平面与a,b都平行;
③过P点可作直线与a,b都垂直;
④过P点可作直线与a,b所成角都等于50°.
这四个命题中正确命题的序号是(  )
A.B.C.③④D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$y=\frac{x}{1-cosx}$的导数是(  )
A.$\frac{1-cosx-xsinx}{1-cosx}$B.$\frac{1-cosx-xsinx}{{{{(1-cosx)}^2}}}$
C.$\frac{1-cosx+sinx}{{{{(1-cosx)}^2}}}$D.$\frac{1-cosx+xsinx}{{{{(1-cosx)}^2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题p:方程$\frac{x^2}{2m}+\frac{y^2}{1-m}=1$表示焦点在y轴上的椭圆,命题q:双曲线$\frac{x^2}{5}-\frac{y^2}{m}=1$的离心率e∈(1,2),若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.用半径为$\frac{\sqrt{3}}{2}$的圆铁皮剪一个内接矩形,再以内接矩形的两边分别作为圆柱的高与底面半径,则该圆柱体积的最大值为(  )
A.πB.$\sqrt{2}$πC.$\sqrt{3}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E,求点E的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线${\frac{x}{3}^2}-\frac{y^2}{6}=-1$的焦点分别为F1、F2,点P在双曲线上.若∠F1PF2=60°,则△F1PF2的面积为(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$3\sqrt{3}$D.$6\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若xlog25=1,求5x+5-x=$\frac{5}{2}$.

查看答案和解析>>

同步练习册答案