精英家教网 > 高中数学 > 题目详情
已知函数g(x)=ax3+bx2+cx(a∈R且a≠0),g(-1)=0,且g(x)的导函数f(x)满足以f(0)f(1)≤0.若方程f(x)=0有两个实根,则
b
a
的取值范围为(  )
分析:由题意得:f(x)=3ax2+2bx+c,由方程f(x)=0有两个实根,知△≥0.由g(-1)=0,知a-b+c=0,结合f(0)f(1)≤0,由此能求出
b
a
的取值范围.
解答:解:由题意得:f(x)=3ax2+2bx+c,
∵g(-1)=0,∴c=-a+b,
∵方程3ax2+2bx+c=0有两个实根,
∴△=4b2-12ac≥0,
即4b2-12a(b-a)≥0,b2-3ab+3a2≥0,它恒成立,
∵f(0)•f(1)≤0,f(0)=c=-a+b,f(1)=3a+2b+c=2a+3b,
∴(-a+b)(2a+3b)≤0,
即3(
b
a
-1)(
b
a
+
2
3
)≤0,所以-
2
3
b
a
≤1,
故选C.
点评:本题考查根与系数的关系,难点在于对条件“f(0)•f(1)≤0”的挖掘,充分考察数学思维的深刻性与灵活性,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)=x3-3ax2-3t2+t(t>0)
(1)求函数g(x)的单调区间;
(2)曲线y=g(x)在点M(a,g(a))和N(b,g(b))(a<b)处的切线都与y轴垂直,若方程g(x)=0在区间[a,b]上有解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=lnx,0<r<s<t<1则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a+lnx
x
,且f(x)+g(x)=
(x+1)lnx
x

(1)若函数f(x)在区间[1,+∞)上为减函数,求实数a的取值范围;
(2)若函数g(x)在[1,e]上的最小值为
3
2
,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•淄博一模)已知函数g(x)=(2-a)lnx,h(x)=lnx+ax2(a∈R),令f(x)=g(x)+h′(x).
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当a<-2时,求f(x)的单调区间;
(Ⅲ)当-3<a<-2时,若对?λ1,λ2∈[1,3],使得|f(λ1)-f(λ2)|<(m+ln3)a-2ln3恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济宁二模)已知函数g(x)=
x
lnx
,f(x)=g(x)-ax(a>0).
(I)求函数g(x)的单调区间;
(Ⅱ)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;
(Ⅲ)当a≥
1
4
时,若?x1,x2∈[e,e2]使f(x1)≤f′(x2)+a成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案