精英家教网 > 高中数学 > 题目详情

设有一几何体的三视图如下,则该几何体体积为(   )
          
正视图                             侧视图

俯视图(圆和正方形)   

A.4+ B.4+ C.4+ D.4+

C

解析试题分析:观察三视图可知,该几何体是一组合体。其体积计算为一个三度分别为2,2,1的长方体与一个底半径为1,高为3的半个圆柱及半个底半径为1,高为2的半个圆柱,所以体积为4+,故选C。
考点:本题主要考查三视图及几何体的体积计算。
点评:基础题,认识几何体的特征是解题的关键。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:单选题

在三棱锥P-ABC中,若PA=PB=PC,则顶点P在底面ABC上的射影O必为△ABC的(    )

A.内心 B.垂心 C.重心 D.外心

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

下列判断正确的是(    )

A.棱柱中只能有两个面可以互相平行
B.底面是正方形的直四棱柱是正四棱柱
C.底面是正六边形的棱台是正六棱台
D.底面是正方形的四棱锥是正四棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若某几何体的三视图如图1所示,则此几何体的表面积是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

图甲所表示的简单组合体可由下面某个图形绕对称轴旋转而成,这个图形是(   )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知三棱锥的所有顶点都在球的球面上,是边长为的正三角形,为球的直径,且,则此棱锥的体积为(   )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设四面体的六条棱的长分别为1,1,1,1,,且长为的棱与长为的棱异面,则的取值范围是

A. B. C. D. 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

球的表面积与它的内接正方体的表面积之比是(   )

A. B. C. D. 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知四棱锥的三视图如图所示,则四棱锥的四个侧面中面积最大的是

A. B. C. D.

查看答案和解析>>

同步练习册答案