精英家教网 > 高中数学 > 题目详情
如图,在Rt△ABC中,, BE平分∠ABC交AC于点E, 点D在AB上,
(1)求证:AC是△BDE的外接圆的切线;
(2)若,求EC的长.
(1)见解析;(2)

试题分析:(1)欲证的外接圆切线,利用“弦切角与同弦所对的圆周角相等”性质,若能证明,则可证结论,方法二:取的中点为,若能证,则结论也成立(自行证明);(2)根据切割线定理(圆幂定理之一),可得,并利用(1)中所证得,利用三角形,可求得.
试题解析:
证明:
因为在Rt△ABC中,, 点D在AB上,
所以DB是的外接圆直径,
又因为BE平分∠ABC交AC于点E,
,
故AC是△BDE的外接圆的切线.             4分
设BD的中点为O,连接OE,
由(1)知则OEAC,从而‖BC,
,
从而AC=9.,得EC=3       .10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,P是O外一点,PA是切线,A为切点,割线PBC与O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交O于点E。

证明:(1)BE=EC;
(2)ADDE=2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,过抛物线y2=2px(p>0)的顶点作两条互相垂直的弦OA、OB.
(1)设OA的斜率为k,试用k表示点A、B的坐标;
(2)求弦AB中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的方程为:y2=4x,直线l过(-2,1)且斜率为k≥0,当k为何值时,直线l与抛物线C(1)只有一个公共点,(2)有两个公共点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设点F1(-c,0)、F2(c,0)分别是椭圆C:
x2
a2
+y2=1(a>1)
的左、右焦点,P为椭圆C上任意一点,且
PF1
PF2
最小值为0.
(1)求椭圆C的方程;
(2)设直线l1:y=kx+m,l2:y=kx+n,若l1、l2均与椭圆C相切,证明:m+n=0;
(3)在(2)的条件下,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,请求出点B坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,⊙的直径延长线上的一点,过点作⊙的切线,切点为,连接,若               

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,直线AB、CD相交于O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理根据是(  )

A.同角的补角相等
B.等角的余角相等
C.同角的余角相等
D.等角的补角相等

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,锐角三角形ABC的高CD和高BE相交于O,则与△DOB相似的三角形个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图是某高速公路一个隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=10m,净高CD=7m,则此圆的半径OA=________m.

查看答案和解析>>

同步练习册答案