精英家教网 > 高中数学 > 题目详情
(2012•闵行区一模)若α为第二象限角,且sin(α-
π
4
)+
2
cos2α=0,则sinα+cosα的值为
1
2
1
2
分析:将sin(α-
π
4
)+
2
cos2α=0变形可得到
2
sin(
π
2
-2α)=sin(
π
4
-α),再利用二倍角公式约分后可得到2
2
cos(
π
4
-α)=1,从而可得答案.
解答:解:∵sin(α-
π
4
)+
2
cos2α=0,
2
cos2α=
2
sin(
π
2
-2α)=-sin(α-
π
4
)=sin(
π
4
-α),
2
•2sin(
π
4
-α)cos(
π
4
-α)=sin(
π
4
-α),
又α为第二象限角,
∴sin(
π
4
-α)≠0,
∴2
2
cos(
π
4
-α)=1,
2
cos(
π
4
-α)=
1
2

展开得,sinα+cosα=
1
2

故答案为:
1
2
点评:本题考查三角函数的恒等变换及化简求值,熟练应用诱导公式与二倍角公式得到2
2
cos(
π
4
-α)=1是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•闵行区一模)设等差数列{an}的首项及公差均是正整数,前n项和为Sn,且a1>1,a4>6,S3≤12,则a2012=
4024
4024

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)在一圆周上给定1000个点.(如图)取其中一点标记上数1,从这点开始按顺时针方向数到第二个点标记上数2,从标记上2的点开始按顺时针方向数到第三个点标记上数3,继续这个过程直到1,2,3,…,2012都被标记到点上,圆周上这些点中有些可能会标记上不止一个数,在标记上2012的那一点上的所有标记的数中最小的是
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)设x1、x2是关于x的方程x2+mx+
1+m2
=0
的两个不相等的实数根,那么过两点A(x1
x
2
1
)
B(x2
x
2
2
)
的直线与圆x2+y2=1的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)设双曲线C:
x2
a2
-
y2
b2
=1(a,b>0)
的虚轴长为2
3
,渐近线方程是y=±
3
x
,O为坐标原点,直线y=kx+m(k,m∈R)与双曲线C相交于A、B两点,且
OA
OB

(1)求双曲C的方程;
(2)求点P(k,m)的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)将边长分别为1、2、3、…、n、n+1、…(n∈N*)的正方形叠放在一起,形成如图所示的图形,由小到大,依次记各阴影部分所在的图形为第1个、第2个、…、第n个阴影部分图形.容易知道第1个阴影部分图形的周长为8.设前n个阴影部分图形的周长的平均值为f(n),记数列{an}满足an=
f(n),当n为奇数
f(an-1) ,当n为偶数

(1)求f(n)的表达式;
(2)写出a1,a2,a3的值,并求数列{an}的通项公式;
(3)记bn=an+s(s∈R),若不等式
.
bn+1bn+1
bn+2bn
.
>0
有解,求s的取值范围.

查看答案和解析>>

同步练习册答案