精英家教网 > 高中数学 > 题目详情
已知△ABC的顶点B(-1,-3),AB边上的高CE所在直线的方程为x-3y-1=0,BC边上中线AD所在直线的方程为8x+9y-3=0.求直线AC的方程.
分析:根据垂直关系算出直线CE的斜率,利用点斜式给出直线AB方程并整理,得AB方程为3x+y+6=0.由AD方程与AB方程联解,可得A(-3,3),结合中点坐标公式解方程组算出C(4,1).最后用直线方程的两点式列式,整理即得直线AC的方程.
解答:解:∵CE⊥AB,且直线CE的斜率为
1
3

∴直线AB的斜率k=
-1
1
3
=-3,
∴直线AB的方程为y+3=-3(x+1)即3x+y+6=0…(3分)
3x+y+6=0
8x+9y-3=0
,解之得
x=-3
y=3

∴A点的坐标为(-3,3)…(7分)
设D(a,b),可得C(2a+1,2b+3)
8a+9b-3=0
2a+1-3(2b+3)-1=0
,解之得
a=
3
2
b=-1

因此D(
3
2
,-1),从而可得C(4,1)…(12分)
∴直线AC的方程为:
y-3
1-3
=
x+3
4+3

化简整理,得2x+7y-15=0,即为直线AC的方程.…(14分)
点评:本题给出三角形的中线和高所在直线方程,求边AC所在直线的方程.着重考查了直线的基本量与基本形式、直线的位置关系和中点坐标公式等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的顶点B、C在椭圆
x2
3
+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是
4
3
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•兰州模拟)已知△ABC的顶点B、C在椭圆
x2
12
+
y2
16
=1
上,顶点A是椭圆的一个焦点,且椭圆的另一个焦点在BC边上,则△ABC的周长是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•长宁区二模)已知△ABC的顶点B、C在椭圆
x2
3
+y2=1上,且BC边经过椭圆的一个焦点,顶点A是椭圆的另一个焦点,则△ABC的周长是
4
3
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点B,C在椭圆x2+3y2=3上,顶点A是椭圆的一个焦点,且椭圆的另一个焦点在BC边上,则△ABC的周长是(  )

查看答案和解析>>

同步练习册答案