分析 (1)根据导函数大于0时原函数单调递增,导函数小于0时原函数单调递减可求单调区间.
(2)先将函数f(x)展开,然后对函数f(x)进行求导,令导函数等于0求x的值,再由函数的单调性进行验证从而最终确定答案.
解答 解:(1)∵f(x)=ax(x-2)2=ax3-4ax2+4ax,
∴f′(x)=3ax2-8ax+4a.
由f′(x)=0,得3ax2-8ax+4a=0.
∵a≠0,∴3x2-8x+4=0.
解得x=2或x=$\frac{2}{3}$.
当x<$\frac{2}{3}$或x>2时,f′(x)>0,∴函数f(x)单调递增
当 $\frac{2}{3}$<x<2时,f′(x)<0,∴函数f(x)单调递减
f(x)在(-∞,$\frac{2}{3}$)和(2,+∞)上是增函数,在( $\frac{2}{3}$,2)上是减函数.
(2)∵f(x)=ax(x-2)2=ax3-4ax2+4ax,
∴f′(x)=3ax2-8ax+4a.
由f′(x)=0,得3ax2-8ax+4a=0.
∵a≠0,∴3x2-8x+4=0.
解得x=2或x=$\frac{2}{3}$.
∵a>0,∴x<$\frac{2}{3}$或x>2时,f′(x)>0; $\frac{2}{3}$<x<2时,f′(x)<0.
∴当x=$\frac{2}{3}$时,f(x)有极大值32,即a×$\frac{2}{3}$($\frac{2}{3}$-2)2=3,
∴a=$\frac{81}{32}$.
点评 本题主要考查函数的极值、单调性与其导函数之间的关系.考查分析问题解决问题的能力,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | 是减函数,有最小值0 | B. | 是增函数,有最小值0 | ||
| C. | 是减函数,有最大值0 | D. | 是增函数,有最大值0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{1}{100},1)$ | B. | (0,$\frac{1}{100}$)∪(1,+∞) | C. | $(\frac{1}{100},100)$ | D. | (0,1)∪(100,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若事件A发生的概率为P(A),则0≤P(A)≤1 | |
| B. | 系统抽样是不放回抽样,每个个体被抽到的可能性相等 | |
| C. | 线性回归直线$\hat y=\hat bx+\hat a$必过点$(\overline x,\overline y)$ | |
| D. | 对于任意两个事件A和B,都有P(A∪B)=P(A)+P(B) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com