精英家教网 > 高中数学 > 题目详情
(2012•佛山一模)如图,三棱锥P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E为PC的中点,点F在PA上,且2PF=FA.
(1)求证:平面PAC平面BEF;
(2)求平面ABC与平面BEF所成的二面角的平面角(锐角)的余弦值.
分析:(1)证明AC⊥平面PBC,可得AC⊥BE,又BE⊥PC,可得BE⊥平面PAC,从而可得平面PAC⊥平面BEF;
(2)取AF的中点G,AB的中点M,连接CG,CM,GM,证明平面CMG∥平面BEF,则平面CMG与平面平面BEF所成的二面角的平面角(锐角)就等于平面ABC与平面BEF所成的二面角的平面角(锐角).
解答:(1)证明:∵PB⊥底面ABC,且AC?底面ABC,∴AC⊥PB,
由∠BCA=90°,可得AC⊥CB,
又∵PB∩CB=B,∴AC⊥平面PBC,
∵BE?平面PBC,∴AC⊥BE,
∵PB=BC,E为PC中点,∴BE⊥PC,
∵AC∩PC=C,∴BE⊥平面PAC,
∵BE?平面BEF,∴平面PAC⊥平面BEF;
(2)解:取AF的中点G,AB的中点M,连接CG,CM,GM,
∵E为PC的中点,2PF=AF,∴EF∥CG,
∵CG?平面BEF,EF?平面BEF,
∴CG∥平面BEF.
同理可证:GM∥平面BEF,∵CG∩GM=G,∴平面CMG∥平面BEF.
则平面CMG与平面平面BEF所成的二面角的平面角(锐角)就等于平面ABC与平面BEF所成的二面角的平面角(锐角).
∵PB⊥底面ABC,CM?平面ABC
∴CM⊥PB,
∵CM⊥AB,PB∩AB=B,∴CM⊥平面PAB,
∵GM?平面PAB,∴CM⊥GM,
而CM为平面CMG与平面ABC的交线,
又AM?底面ABC,GM?平面CMG,∴∠AMG为二面角G-CM-A的平面角
根据条件可知AM=
2
,AG=
1
3
PA=
2
3
3

在△PAB中,cos∠GAM=
AB
AP
=
6
3

在△AGM中,由余弦定理求得MG=
6
3
,∴cos∠AMG=
3
3

故平面ABC与平面PEF所成角的二面角(锐角)的余弦值为
3
3
点评:本题考查面面垂直,考查面面角,解题的关键是掌握面面垂直的判定,正确作出面面角,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•佛山一模)设n∈N*,圆Cn:x2+y2=
R
2
n
(Rn>0)与y轴正半轴的交点为M,与曲线y=
x
的交点为N(
1
n
yn
),直线MN与x轴的交点为A(an,0).
(1)用n表示Rn和an
(2)求证:an>an+1>2;
(3)设Sn=a1+a2+a3+…+an,Tn=1+
1
2
+
1
3
+…+
1
n
,求证:
7
5
Sn-2n
Tn
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山一模)某学校三个社团的人员分布如下表(每名同学只参加一个社团)
合唱社 粤曲社 书法社
高一 45 30 a
高二 15 10 20
学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从社团成员中抽取30人,结果合唱社被抽出12人,则这三个社团人数共有
150
150

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山一模)下列函数中既是奇函数,又在区间(-1,1)上是增函数的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山一模)函数y=
3
sinx+sin(x+
π
2
)的最小正周期是

查看答案和解析>>

同步练习册答案