精英家教网 > 高中数学 > 题目详情
a
0
x2dx
=9.则(2x+
1
x
2a的常数项为
 
考点:二项式定理,微积分基本定理
专题:导数的综合应用
分析:利用微积分基本定理可得a,再利用二项式定理的通项公式即可得出.
解答: 解:∵
a
0
x2dx
=9,
1
3
x3
|
a
0
=9,∴
1
3
×a3
=9,
解得a=3.
∴(2x+
1
x
2a即为(2x+
1
x
)6

由通项公式可得Tr+1=
r
6
=(2x)6-r(
1
x
)r
=26-r
r
6
x6-2r
令6-2r=0,解得r=3,
∴(2x+
1
x
2a的常数项为T4=23×
3
6
=160.
故答案为:160.
点评:本题考查了微积分基本定理、二项式定理的通项公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|x2-5x+4<0},B={y|-1<y<3},则A∩(∁RB)=(  )
A、(1,4)
B、[3,4)
C、(1,3)
D、(1,2)∪(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,底面ABCD是正方形,E,F分别是PC,AB的中点,平面PAD⊥底面ABCD
(1)求证:EF∥平面PAD;
(2)求证:AB⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

向量
a
=(2sinx,cosx),
b
=(
3
cosx,2cosx),设函数f(x)=m
a
b
+n(其中m>0,n∈R),函数f(x)在区间[0,
π
4
]上的值域为[2,3].
(Ⅰ)求m,n的值,并求函数f(x)图象的单调递增区间;
(Ⅱ)在△ABC中,角A、B、C所对的边长分别为a、b、c,若f(A)=2,sinB=3sinC,△ABC的面积为
3
3
4
,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x>0,y>0,
1
x
+
1
y
=
1
2
,则2x+y的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业为节能减排,用9万元购进一台新设备用于生产.第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了n(n∈N*)年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则n等于(  )
A、6B、5C、4D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x•ecosx(x∈[-π,π])的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条直线l1:(a-1)x-2y+b=0,l2:ax+(b-4)y+3=0.若l1⊥l2且l1过点(1,3).
(Ⅰ)当a>0时,求l1,l2方程;
(Ⅱ)若光线沿直线l1射入,遇直线x=0后反射,求反射光线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),g(x),φ(x)如查存在实数a,b使得φ(x)=a•f(x)+b•g(x),那么称φ(x)为f(x),g(x)的线性组合函数,如对于f(x)=x+1,g(x)=x2+2x,φ(x)=2-x2存在a=2,b=-1使得φ(x)=2f(x)=g(x),此时φ(x)就是f(x),g(x)的线性组合函数.
(Ⅰ)设f(x)=x2+1,g(x)=x2-x,φ(x)=x2-2x+3,试判断φ(x)是否为f(x),g(x)的线性组合函数?关说明理由;
(Ⅱ)设f(x)=log2x,g(x)=log 
1
2
x,a=2,b=1,线性组合函数为φ(x),若不等式3φ2(x)-2φ(x)+m<0在x∈[
2
,4]上有解,求实数m的取值范围;
(Ⅲ)设f(x)=x,g(x)=
1
x
(1≤x≤9),取a=1,b>0,线性组合函数φ(x)使φ(x)≥b恒成立,求b的取值范围,(可利用函数y=x+
k
x
(常数k>0)在(0,
k
]上是减函数,在[
k
,+∞)上是增函数)

查看答案和解析>>

同步练习册答案