精英家教网 > 高中数学 > 题目详情
设函数f(x)=
3
cos(2x+φ)+sin(2x+φ)(|φ|<
π
2
)
,且其图象关于直线x=0对称,则(  )
A.y=f(x)的最小正周期为π,且在(0,
π
2
)
上为增函数
B.y=f(x)的最小正周期为π,且在(0,
π
2
)
上为减函数
C.y=f(x)的最小正周期为
π
2
,且在(0,
π
4
)
上为增函数
D.y=f(x)的最小正周期为
π
2
,且在(0,
π
4
)
上为减函数
f(x)=
3
cos(2x+φ)+sin(2x+φ)
=2[
3
2
cos(2x+φ)+
1
2
sin(2x+φ)]
=2cos(2x+φ-
π
6
),
∵ω=2,
∴T=
2
=π,
又函数图象关于直线x=0对称,
∴φ-
π
6
=kπ(k∈Z),即φ=kπ+
π
6
(k∈Z),
又|φ|<
π
2

∴φ=
π
6

∴f(x)=2cos2x,
令2kπ≤2x≤2kπ+π(k∈Z),解得:kπ≤x≤kπ+
π
2
(k∈Z),
∴函数的递减区间为[kπ,kπ+
π
2
](k∈Z),
又(0,
π
2
)?[kπ,kπ+
π
2
](k∈Z),
∴函数在(0,
π
2
)上为减函数,
则y=f(x)的最小正周期为π,且在(0,
π
2
)上为减函数.
故选B
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
x
,x≥0
-x
,x<0
,若f(a)+f(-1)=2,则a=(  )
A、-3B、±3C、-1D、±1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2-x,x∈(-∞,1]
log81x,x∈(1,+∞)
则满f(x)=
1
4
的x的值(  )
A、只有2B、只有3
C、2或3D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=asinx-bcosx在x=
π
3
处有最小值-2,则常数a,b的值分别为
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
2
cos(ωx+φ)
,对任意x∈R都有f(
π
3
-x)
=f(
π
3
+x)
,若函数g(x)=3sin(ωx+φ)-2,则g(
π
3
)
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+?)(ω>0,0<?<
π
2
)
.若将f(x)的图象沿x轴向右平移
1
6
个单位长度,得到的图象经过坐标原点;若将f(x)的图象上所有的点的横坐标缩短到原来的
1
2
倍(纵坐标不变),得到的图象经过点(
1
6
,1)
,则(  )
A、ω=π,?=
π
6
B、ω=2π,?=
π
3
C、ω=
4
,?=
π
8
D、适合条件的ω,?不存在

查看答案和解析>>

同步练习册答案