精英家教网 > 高中数学 > 题目详情
设函数f(x)=
1
2
cos(ωx+φ)
,对任意x∈R都有f(
π
3
-x)
=f(
π
3
+x)
,若函数g(x)=3sin(ωx+φ)-2,则g(
π
3
)
的值为(  )
分析:依题意知,x=
π
3
为f(x)=
1
2
cos(ωx+φ)的一条对称轴,从而得
π
3
ω+φ=kπ(k∈Z),从而可求得g(
π
3
).
解答:解:∵f(x)=
1
2
cos(ωx+φ),对任意x∈R都有f(
π
3
-x)=f(
π
3
+x),
∴x=
π
3
是f(x)=
1
2
cos(ωx+φ)的一条对称轴,
π
3
ω+φ=kπ(k∈Z),
∴g(
π
3
)=3sin(
π
3
×ω+φ)-2=3sinkπ-2=-2.
故选:C.
点评:本题考查余弦函数的对称性,求得
π
3
ω+φ=kπ(k∈Z)是关键,考查推理、运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
2
)x-7 (x<0)
x
 
(x≥0)
,若f(a)<1
,则实数a的取值范围是(  )
A、(-∞,-3)
B、(1,+∞)
C、(-3,1)
D、(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
2
)x-1,x≥0
x2,x<0
与函数g(x)的图象关于直线y=x对称,则当x>0时,g(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
2
)
x
 (x≤0)
x
1
2
     (x>0)
,若f(x0)>2,则x0的取值范围是(  )
A、(-1,4)
B、(-1,+∞)
C、(4,+∞)
D、(-∞,-1)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
2
)x-3(x≤0)
x
1
2
(x>0)
,已知f(a)>1,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
2
)x+1(x<-1)
-x2+2(-1≤x≤2)
3x-8(x>2)

(Ⅰ)请在下列直角坐标系中画出函数f(x)的图象;
(Ⅱ)根据(Ⅰ)的图象,试分别写出关于x的方程f(x)=t有2,3,4个实数解时,相应的实数t的取值范围;
(Ⅲ)记函数g(x)的定义域为D,若存在x0∈D,使g(x0)=x0成立,则称点(x0,x0)为函数g(x)图象上的不动点.试问,函数f(x)图象上是否存在不动点,若存在,求出不动点的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案